
© 2005 Microchip Technology Inc. DS51297F

MPLAB® C18
C COMPILER

LIBRARIES

DS51297F-page ii © 2005 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page iii

Table of Contents

Preface ... 1

Chapter 1. Overview
1.1 Introduction ... 5
1.2 MPLAB C18 Libraries Overview ... 5
1.3 Start-up Code ... 5
1.4 Processor-independent Library .. 6
1.5 Processor-specific Libraries ... 7

Chapter 2. Hardware Peripheral Functions
2.1 Introduction ... 9
2.2 A/D Converter Functions .. 9
2.3 Input Capture Functions ... 17
2.4 I2C™ Functions .. 21
2.5 I/O Port Functions .. 34
2.6 Microwire Functions ... 37
2.7 Pulse-Width Modulation Functions ... 44
2.8 SPI™ Functions ... 48
2.9 Timer Functions .. 57
2.10 USART Functions ... 66

Chapter 3. Software Peripheral Library
3.1 Introduction ... 75
3.2 External LCD Functions ... 75
3.3 External CAN2510 Functions ... 82
3.4 Software I2C Functions .. 105
3.5 Software SPI™ Functions ... 111
3.6 Software UART Functions .. 114

Chapter 4. General Software Library
4.1 Introduction ... 117
4.2 Character Classification Functions ... 117
4.3 Data Conversion Functions .. 122
4.4 Memory and String Manipulation Functions ... 126
4.5 Delay Functions .. 142
4.6 Reset Functions ... 144
4.7 Character Output Functions ... 147

Chapter 5. Math Libraries
5.1 Introduction ... 157
5.2 32-Bit Floating Point Math Library .. 157
5.3 The C Standard Library Math Functions .. 160

MPLAB® C18 C Compiler Libraries

DS51297F-page iv © 2005 Microchip Technology Inc.

Glossary ...167

Index ...173

Worldwide Sales and Service ...180

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 1

Preface

INTRODUCTION

The purpose of this document is to provide detailed information on the libraries and
precompiled object files that may be used with Microchip’s MPLAB® C18 C Compiler.

DOCUMENT LAYOUT

The document layout is as follows:

• Chapter 1: Overview – describes the libraries and precompiled object files
available.

• Chapter 2: Hardware Peripheral Functions – describes each hardware
peripheral library function.

• Chapter 3: Software Peripheral Library – describes each software peripheral
library function.

• Chapter 4: General Software Library – describes each general software library
function.

• Chapter 5: Math Library – discusses the math library functions.
• Glossary – A glossary of terms used in this guide.
• Index – Cross-reference listing of terms, features and sections of this document.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

MPLAB® C18 C Compiler Libraries

DS51297F-page 2 © 2005 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

RECOMMENDED READING

For more information on included libraries and precompiled object files for the
compilers, the operation of MPLAB IDE and the use of other tools, the following are
recommended reading.

readme.c18

For the latest information on using MPLAB C18 C Compiler, read the readme.c18 file
(ASCII text) included with the software. This readme file contains update information
that may not be included in this document.

readme.xxx

For the latest information on other Microchip tools (MPLAB IDE, MPLINK™ linker, etc.),
read the associated readme files (ASCII text file) included with the software.

MPLAB® C18 C Compiler Getting Started Guide (DS51295)

Describes how to install the MPLAB C18 compiler, how to write simple programs and
how to use the MPLAB IDE with the compiler.

MPLAB® C18 C Compiler User’s Guide (DS51288)

Comprehensive guide that describes the operation and features of Microchip’s MPLAB
C18 C compiler for PIC18 devices.

MPLAB® IDE Quick Start Guide (DS51281)

Describes how to set up the MPLAB IDE software and use it to create projects and
program devices.

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide
Courier font:
Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Italic Courier A variable argument file.o, where file can be any valid
filename

0bnnnn A binary number where n is a
binary digit

0b00100, 0b10

0xnnnn A hexadecimal number where
n is a hexadecimal digit

0xFFFF, 0x007A

Square brackets [] Optional arguments mcc18 [options] file [options]

Curly brackets and
pipe character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [, var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Preface

© 2005 Microchip Technology Inc. DS51297F-page 3

MPASM™ Assembler, MPLINK™ Object Linker, and MPLIB™ Object Librarian
User’s Guide (DS33014)

Describes how to use the Microchip PICmicro® microcontroller (MCU) assembler
(MPASM), linker (MPLINK) and librarian (MPLIB).

PICmicro® 18C MCU Family Reference Manual (DS39500)

Focuses on the Enhanced MCU family of devices. The operation of the Enhanced MCU
family architecture and peripheral modules is explained but does not cover the
specifics of each device.

PIC18 Device Data Sheets and Application Notes

Data sheets describe the operation and electrical specifications of PIC18 devices.
Application notes describe how to use PIC18 devices.

To obtain any of the above listed documents, visit the Microchip web site
(www.microchip.com) to retrieve these documents in Adobe Acrobat (.pdf) format.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

MPLAB® C18 C Compiler Libraries

DS51297F-page 4 © 2005 Microchip Technology Inc.

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager
and general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the PICSTART®
Plus and PICkit® development programmers.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Development Systems Information Line

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

In addition, there is a Development Systems Information Line which lists the latest
versions of Microchip’s development systems software products. This line also
provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:

1-800-755-2345 – United States and most of Canada

1-480-792-7302 – Other International Locations

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 5

Chapter 1. Overview

1.1 INTRODUCTION

This chapter gives an overview of the MPLAB C18 library files and precompiled object
files that can be included in an application.

1.2 MPLAB C18 LIBRARIES OVERVIEW

A library is a collection of functions grouped for reference and ease of linking. See the
MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s
Guide (DS33014) for more information about creating and maintaining libraries.

The MPLAB C18 libraries are included in the lib subdirectory of the installation. These
can be linked directly into an application using the MPLINK linker.

These files were precompiled in the c:\mcc18\src directory at Microchip. The
directory src\traditional contains the files for Non-extended mode and
src\extended contains the files for Extended mode. If you chose not to install the
compiler and related files in the c:\mcc18 directory, source code from the libraries will
not show in the linker listing file and cannot be stepped through when using MPLAB
IDE.

To include the library code in the .lst file and to be able to single step through library
functions, follow the instructions in Section 1.3.3, Section 1.4.3 and Section 1.5.3
to rebuild the libraries using the supplied batch files (.bat) found in the src,
src\traditional and src\extended directories.

1.3 START-UP CODE

1.3.1 Overview

Three versions of start-up code are provided with MPLAB C18, with varying levels of
initialization. The c018*.o object files are for use with the compiler operating in the
Non-extended mode. The c018*_e.o object files are for use with the compiler when
operating in Extended mode. In increasing order of complexity, they are:

c018.o/c018_e.o initializes the C software stack and jumps to the start of the
application function, main().

c018i.o/c018i_e.o performs all of the same tasks as c018.o/c018_e.o and also
assigns the appropriate values to initialized data prior to calling the user’s application.
Initialization is required if global or static variables are set to a value when they are
defined. This is the start-up code that is included in the linker script files that are
provided with MPLAB C18.

c018iz.o/c018iz_e.o performs all of the same tasks as c018i.o/c018i_e.o
and also assigns zero to all uninitialized variables, as is required for strict ANSI
compliance.

MPLAB® C18 C Compiler Libraries

DS51297F-page 6 © 2005 Microchip Technology Inc.

1.3.2 Source Code

The source code for the start-up routines may be found in the src\traditional\
startup and src\extended\startup subdirectories of the compiler installation.

1.3.3 Rebuilding

The batch file makestartup.bat may be used to rebuild the start-up code and copy
the generated object files to the lib directory.

Before rebuilding the start-up code with makestartup.bat, verify that MPLAB C18
(mcc18.exe) is in your path.

1.4 PROCESSOR-INDEPENDENT LIBRARY

1.4.1 Overview

The standard C library (clib.lib or clib_e.lib) provides functions that are
supported by the core PIC18 architecture: those that are supported across all
processors in the family. These functions are described in the following chapters:

• General Software Library, Chapter 4.
• Math Libraries, Chapter 5.

1.4.2 Source Code

The source code for the functions in the standard C library may be found in the
following subdirectories of the compiler installation:

• src\traditional\math

• src\extended\math

• src\traditional\delays

• src\extended\delays

• src\traditional\stdclib

• src\extended\stdclib

1.4.3 Rebuilding

The batch file makeclib.bat may be used to rebuild the processor-independent
library. Before invoking this batch file, verify that the following tools are in your path:

• MPLAB C18 (mcc18.exe)
• MPASM assembler (mpasm.exe)
• MPLIB librarian (mplib.exe)

Also prior to rebuilding the standard C library, be sure that the environment variable
MCC_INCLUDE is set to the path of the MPLAB C18 include files (e.g., c:\mcc18\h).

Overview

© 2005 Microchip Technology Inc. DS51297F-page 7

1.5 PROCESSOR-SPECIFIC LIBRARIES

1.5.1 Overview

The processor-specific library files contain definitions that may vary across individual
members of the PIC18 family. This includes all of the peripheral routines and the
Special Function Register (SFR) definitions. The peripheral routines that are provided
include both those designed to use the hardware peripherals and those that implement
a peripheral interface using general purpose I/O lines. The functions included in the
processor-specific libraries are described in the following chapters:

• Chapter 2. “Hardware Peripheral Functions”
• Chapter 3. “Software Peripheral Library”

The processor-specific libraries are named:

p processor.lib – Non-extended mode processor-specific library

p processor_e.lib – Extended mode processor-specific library

For example, the library file for the PIC18F4620 is named p18f4620.lib for the
Non-extended version of the library and p18f4620_e.lib for the Extended version
of the library.

1.5.2 Source Code

The source code for the processor-specific libraries may be found in the following
subdirectories of the compiler installation:

• src\traditional\pmc

• src\extended\pmc

• src\traditional\proc

• src\extended\proc

1.5.3 Rebuilding

The batch file makeplib.bat may be used to rebuild the processor-specific libraries.
Before invoking this batch file, verify that the following tools are in your path:

• MPLAB C18 (mcc18.exe)
• MPASM assembler (mpasm.exe)
• MPLIB librarian (mplib.exe)

Also prior to invoking makeplib.bat, be sure that the environment variable
MCC_INCLUDE is set to the path of the MPLAB C18 include files (e.g., c:\mcc18\h).

MPLAB® C18 C Compiler Libraries

DS51297F-page 8 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 9

Chapter 2. Hardware Peripheral Functions

2.1 INTRODUCTION

This chapter documents the hardware peripheral functions found in the
processor-specific libraries. The source code for all of these functions is included with
MPLAB C18 in the src\traditional\pmc and src\extended\pmc subdirectories
of the compiler installation.

See the MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian
User’s Guide (DS33014) for more information about managing libraries using the
MPLIB librarian.

The following peripherals are supported by MPLAB C18 library routines:

• A/D Converter (Section 2.2 “A/D Converter Functions”)
• Input Capture (Section 2.3 “Input Capture Functions”)
• I2C™ (Section 2.4 “I2C™ Functions”)
• I/O Ports (Section 2.5 “I/O Port Functions”)
• Microwire (Section 2.6 “Microwire Functions”)
• Pulse-Width Modulation (PWM) (Section 2.7 “Pulse-Width Modulation

Functions”)
• SPI™ (Section 2.8 “SPI™ Functions”)
• Timer (Section 2.9 “Timer Functions”)
• USART (Section 2.10 “USART Functions”)

2.2 A/D CONVERTER FUNCTIONS

The A/D peripheral is supported with the following functions:

TABLE 2-1: A/D CONVERTER FUNCTIONS

Function Description

BusyADC Is A/D converter currently performing a conversion?

CloseADC Disable the A/D converter.

ConvertADC Start an A/D conversion.

OpenADC Configure the A/D convertor.

ReadADC Read the results of an A/D conversion.

SetChanADC Select A/D channel to be used.

MPLAB® C18 C Compiler Libraries

DS51297F-page 10 © 2005 Microchip Technology Inc.

2.2.1 Function Descriptions

BusyADC
Function: Is the A/D converter currently performing a conversion?

Include: adc.h

Prototype: char BusyADC(void);

Remarks: This function indicates if the A/D peripheral is in the process of
converting a value.

Return Value: 1 if the A/D peripheral is performing a conversion.
0 if the A/D peripheral isn’t performing a conversion.

File Name: adcbusy.c

CloseADC
Function: Disable the A/D converter.

Include: adc.h

Prototype: void CloseADC(void);

Remarks: This function disables the A/D convertor and A/D interrupt mechanism.

File Name: adcclose.c

ConvertADC
Function: Starts the A/D conversion process.

Include: adc.h

Prototype: void ConvertADC(void);

Remarks: This function starts an A/D conversion. The BusyADC() function may
be used to detect completion of the conversion.

File Name: adcconv.c

OpenADC
PIC18CXX2, PIC18FXX2, PIC18FXX8, PIC18FXX39
Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char config,
 unsigned char config2);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file adc.h.

A/D clock source:
ADC_FOSC_2 FOSC / 2
ADC_FOSC_4 FOSC / 4
ADC_FOSC_8 FOSC / 8
ADC_FOSC_16 FOSC / 16
ADC_FOSC_32 FOSC / 32
ADC_FOSC_64 FOSC / 64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification:
ADC_RIGHT_JUST Result in Least Significant bits
ADC_LEFT_JUST Result in Most Significant bits

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 11

A/D voltage reference source:
ADC_8ANA_0REF VREF+=VDD, VREF-=VSS,

All analog channels
ADC_7ANA_1REF AN3=VREF+, All analog

channels except AN3
ADC_6ANA_2REF AN3=VREF+, AN2=VREF

ADC_6ANA_0REF VREF+=VDD, VREF-=VSS

ADC_5ANA_1REF AN3=VREF+, VREF-=VSS

ADC_5ANA_0REF VREF+=VDD, VREF-=VSS

ADC_4ANA_2REF AN3=VREF+, AN2=VREF-
ADC_4ANA_1REF AN3=VREF+
ADC_3ANA_2REF AN3=VREF+, AN2=VREF-
ADC_3ANA_0REF VREF+=VDD, VREF-=VSS

ADC_2ANA_2REF AN3=VREF+, AN2=VREF-
ADC_2ANA_1REF AN3=VREF+
ADC_1ANA_2REF AN3=VREF+, AN2=VREF-,

AN0=A
ADC_1ANA_0REF AN0 is analog input
ADC_0ANA_0REF All digital I/O

config2
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file adc.h.

Channel:
ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7

A/D Interrupts:
ADC_INT_ON Interrupts enabled
ADC_INT_OFF Interrupts disabled

Remarks: This function resets the A/D peripheral to the POR state and configures
the A/D-related Special Function Registers (SFRs) according to the
options specified.

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32 &
 ADC_RIGHT_JUST &
 ADC_1ANA_0REF,
 ADC_CH0 &
 ADC_INT_OFF);

OpenADC
PIC18CXX2, PIC18FXX2, PIC18FXX8, PIC18FXX39 (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 12 © 2005 Microchip Technology Inc.

OpenADC
PIC18C658/858, PIC18C601/801,
PIC18F6X20, PIC18F8X20
Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char config,
 unsigned char config2);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file adc.h.

A/D clock source:
ADC_FOSC_2 FOSC / 2
ADC_FOSC_4 FOSC / 4
ADC_FOSC_8 FOSC / 8
ADC_FOSC_16 FOSC / 16
ADC_FOSC_32 FOSC / 32
ADC_FOSC_64 FOSC / 64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification:
ADC_RIGHT_JUST Result in Least Significant bits
ADC_LEFT_JUST Result in Most Significant bits

A/D port configuration:
ADC_0ANA All digital
ADC_1ANA analog:AN0 digital:AN1-AN15
ADC_2ANA analog:AN0-AN1 digital:AN2-AN15
ADC_3ANA analog:AN0-AN2 digital:AN3-AN15
ADC_4ANA analog:AN0-AN3 digital:AN4-AN15
ADC_5ANA analog:AN0-AN4 digital:AN5-AN15
ADC_6ANA analog:AN0-AN5 digital:AN6-AN15
ADC_7ANA analog:AN0-AN6 digital:AN7-AN15
ADC_8ANA analog:AN0-AN7 digital:AN8-AN15
ADC_9ANA analog:AN0-AN8 digital:AN9-AN15
ADC_10ANA analog:AN0-AN9 digital:AN10-AN15
ADC_11ANA analog:AN0-AN10 digital:AN11-AN15
ADC_12ANA analog:AN0-AN11 digital:AN12-AN15
ADC_13ANA analog:AN0-AN12 digital:AN13-AN15
ADC_14ANA analog:AN0-AN13 digital:AN14-AN15
ADC_15ANA All analog

config2
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file adc.h.

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 13

Channel:
ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12
ADC_CH13 Channel 13
ADC_CH14 Channel 14
ADC_CH15 Channel 15

A/D Interrupts:
ADC_INT_ON Interrupts enabled
ADC_INT_OFF Interrupts disabled

A/D VREF+ configuration:
ADC_VREFPLUS_VDD VREF+ = AVDD

ADC_VREFPLUS_EXT VREF+ = external

A/D VREF- configuration:
ADC_VREFMINUS_VSS VREF- = AVSS

ADC_VREFMINUS_EXT VREF- = external

Remarks: This function resets the A/D-related registers to the POR state and then
configures the clock, result format, voltage reference, port and channel.

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32 &
 ADC_RIGHT_JUST &
 ADC_14ANA,
 ADC_CH0 &
 ADC_INT_OFF);

OpenADC
PIC18C658/858, PIC18C601/801,
PIC18F6X20, PIC18F8X20 (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 14 © 2005 Microchip Technology Inc.

OpenADC
All Other Processors
Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char config,
 unsigned char config2 ,
 unsigned char portconfig);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file adc.h.

A/D clock source:
ADC_FOSC_2 FOSC / 2
ADC_FOSC_4 FOSC / 4
ADC_FOSC_8 FOSC / 8
ADC_FOSC_16 FOSC / 16
ADC_FOSC_32 FOSC / 32
ADC_FOSC_64 FOSC / 64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification:
ADC_RIGHT_JUST Result in Least Significant bits
ADC_LEFT_JUST Result in Most Significant bits

A/D acquisition time select:
ADC_0_TAD 0 Tad
ADC_2_TAD 2 Tad
ADC_4_TAD 4 Tad
ADC_6_TAD 6 Tad
ADC_8_TAD 8 Tad
ADC_12_TAD 12 Tad
ADC_16_TAD 16 Tad
ADC_20_TAD 20 Tad

config2
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file adc.h.

Channel:
ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12
ADC_CH13 Channel 13
ADC_CH14 Channel 14
ADC_CH15 Channel 15

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 15

A/D Interrupts:
ADC_INT_ON Interrupts enabled
ADC_INT_OFF Interrupts disabled

A/D voltage configuration:
ADC_VREFPLUS_VDD VREF+ = AVDD

ADC_VREFPLUS_EXT VREF+ = external
ADC_VREFMINUS_VDD VREF- = AVDD

ADC_VREFMINUS_EXT VREF- = external

portconfig
The value of portconfig is any value from 0 to 127 inclusive for the
PIC18F1220/1320 and 0 to 15 inclusive for all other processors. This is
the value of bits 0 through 6 or bits 0 through 3 of the ADCON1 register,
which are the port configuration bits.

Remarks: This function resets the A/D-related registers to the POR state and then
configures the clock, result format, voltage reference, port and channel.

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32 &
 ADC_RIGHT_JUST &
 ADC_12_TAD,
 ADC_CH0 &
 ADC_INT_OFF, 15);

ReadADC
Function: Read the result of an A/D conversion.

Include: adc.h

Prototype: int ReadADC(void);

Remarks: This function reads the 16-bit result of an A/D conversion.

Return Value: This function returns the 16-bit signed result of the A/D conversion.
Based on the configuration of the A/D converter (e.g., using the
OpenADC() function), the result will be contained in the Least
Significant or Most Significant bits of the 16-bit result.

File Name: adcread.c

OpenADC
All Other Processors (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 16 © 2005 Microchip Technology Inc.

2.2.2 Example Use of the A/D Converter Routines

#include <p18C452.h>
#include <adc.h>
#include <stdlib.h>
#include <delays.h>

int result;

void main(void)
{
 // configure A/D convertor
 OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_8ANA_0REF,
 ADC_CH0 & ADC_INT_OFF);

 Delay10TCYx(5); // Delay for 50TCY
 ConvertADC(); // Start conversion
 while(BusyADC()); // Wait for completion
 result = ReadADC(); // Read result
 CloseADC(); // Disable A/D converter
}

SetChanADC
Function: Select the channel used as input to the A/D converter.

Include: adc.h

Prototype: void SetChanADC(unsigned char channel);

Arguments: channel
One of the following values (defined in adc.h):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11

Remarks: Selects the pin that will be used as input to the A/D converter.

File Name: adcsetch.c

Code Example: SetChanADC(ADC_CH0);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 17

2.3 INPUT CAPTURE FUNCTIONS

The capture peripheral is supported with the following functions:

TABLE 2-2: INPUT CAPTURE FUNCTIONS

Note 1: The enhanced capture functions are only available on those devices with an
ECCPxCON register.

2.3.1 Function Descriptions

Function Description

CloseCapturex Disable capture peripheral x.

OpenCapturex Configure capture peripheral x.

ReadCapturex Read a value from capture peripheral x.

CloseECapturex(1) Disable enhanced capture peripheral x.

OpenECapturex(1) Configure enhanced capture peripheral x.

ReadECapturex(1) Read a value from enhanced capture peripheral x.

CloseCapture1
CloseCapture2
CloseCapture3
CloseCapture4
CloseCapture5
CloseECapture1
Function: Disable input capture x.

Include: capture.h

Prototype: void CloseCapture1(void);
void CloseCapture2(void);
void CloseCapture3(void);
void CloseCapture4(void);
void CloseCapture5(void);
void CloseECapture1(void);

Remarks: This function disables the interrupt corresponding to the specified input
capture.

File Name: cp1close.c
cp2close.c
cp3close.c
cp4close.c
cp5close.c
ep1close.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 18 © 2005 Microchip Technology Inc.

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4
OpenCapture5
OpenECapture1
Function: Configure and enable input capture x.

Include: capture.h

Prototype: void OpenCapture1(unsigned char config);
void OpenCapture2(unsigned char config);
void OpenCapture3(unsigned char config);
void OpenCapture4(unsigned char config);
void OpenCapture5(unsigned char config);
void OpenECapture1(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file capture.h:

Enable CCP Interrupts:
CAPTURE_INT_ON Interrupts Enabled
CAPTURE_INT_OFF Interrupts Disabled

Interrupt Trigger (replace x with CCP module number):
Cx_EVERY_FALL_EDGE Interrupt on every falling edge
Cx_EVERY_RISE_EDGE Interrupt on every rising edge
Cx_EVERY_4_RISE_EDGE Interrupt on every 4th rising edge
Cx_EVERY_16_RISE_EDGE Interrupt on every 16th rising

edge
EC1_EVERY_FALL_EDGE Interrupt on every falling edge

(enhanced)
EC1_EVERY_RISE_EDGE Interrupt on every rising edge

(enhanced)
EC1_EVERY_4_RISE_EDGE Interrupt on every 4th rising edge

(enhanced)
EC1_EVERY_16_RISE_EDGE Interrupt on every 16th rising

edge (enhanced)

Remarks: This function first resets the capture module to the POR state and then
configures the input capture for the specified edge detection.

The capture functions use a structure, defined in capture.h, to
indicate overflow status of each of the capture modules. This structure
is called CapStatus and has the following bit fields:
Cap1OVF
Cap2OVF
Cap3OVF
Cap4OVF
Cap5OVF
ECap1OVF

In addition to opening the capture, the appropriate timer module must
be enabled before any of the captures will operate. See the data sheet
for CCP and timer interconnect configurations and Section 2.9 “Timer
Functions” for the arguments used with CCP in OpenTimer3.

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 19

File Name: cp1open.c
cp2open.c
cp3open.c
cp4open.c
cp5open.c
ep1open.c

Code Example: OpenCapture1(CAPTURE_INT_ON &
 C1_EVERY_4_RISE_EDGE);

ReadCapture1
ReadCapture2
ReadCapture3
ReadCapture4
ReadCapture5
ReadECapture1
Function: Read the result of a capture event from the specified input capture.

Include: capture.h

Prototype: unsigned int ReadCapture1(void);
unsigned int ReadCapture2(void);
unsigned int ReadCapture3(void);
unsigned int ReadCapture4(void);
unsigned int ReadCapture5(void);
unsigned int ReadECapture1(void);

Remarks: This function reads the value of the respective input capture’s SFRs.

Return Value: This function returns the result of the capture event.

File Name: cp1read.c
cp2read.c
cp3read.c
cp4read.c
cp5read.c
ep1read.c

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4
OpenCapture5
OpenECapture1 (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 20 © 2005 Microchip Technology Inc.

2.3.2 Example Use of the Capture Routines

This example demonstrates the use of the capture library routines in a “polled”
(not interrupt-driven) environment.

#include <p18C452.h>
#include <capture.h>
#include <timers.h>
#include <usart.h>
#include <stdlib.h>

void main(void)
{
 unsigned int result;
 char str[7];

 // Configure Capture1
 OpenCapture1(C1_EVERY_4_RISE_EDGE &
 CAPTURE_INT_OFF);

 // Configure Timer3
 OpenTimer3(TIMER_INT_OFF &
 T3_SOURCE_INT);

 // Configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX,
 25);

 while(!PIR1bits.CCP1IF); // Wait for event
 result = ReadCapture1(); // read result
 ultoa(result,str); // convert to string

 // Write the string out to the USART if
 // an overflow condition has not occurred.
 if(!CapStatus.Cap1OVF)
 {
 putsUSART(str);
 }

 // Clean up
 CloseCapture1();
 CloseTimer3();
 CloseUSART();
}

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 21

2.4 I2C™ FUNCTIONS

The following routines are provided for devices with a single I2C peripheral:

TABLE 2-3: SINGLE I2C™ PERIPHERAL FUNCTIONS

The following routines are provided for devices with multiple I2C peripherals:

TABLE 2-4: MULTIPLE I2C™ PERIPHERAL FUNCTIONS

Function Description

AckI2C Generate I2C™ bus Acknowledge condition.

CloseI2C Disable the SSP module.

DataRdyI2C Is the data available in the I2C buffer?

getcI2C Read a single byte from the I2C bus.

getsI2C Read a string from the I2C bus operating in master I2C mode.

IdleI2C Loop until I2C bus is idle.

NotAckI2C Generate I2C bus Not Acknowledge condition.

OpenI2C Configure the SSP module.

putcI2C Write a single byte to the I2C bus.

putsI2C Write a string to the I2C bus operating in either Master or Slave mode.

ReadI2C Read a single byte from the I2C bus.

RestartI2C Generate an I2C bus Restart condition.

StartI2C Generate an I2C bus Start condition.

StopI2C Generate an I2C bus Stop condition.

WriteI2C Write a single byte to the I2C bus.

Function Description

AckI2Cx Generate I2Cx bus Acknowledge condition.

CloseI2Cx Disable the SS x module.

DataRdyI2Cx Is the data available in the I2Cx buffer?

getcI2Cx Read a single byte from the I2Cx bus.

getsI2Cx Read a string from the I2Cx bus operating in master I2C mode.

IdleI2Cx Loop until I2Cx bus is idle.

NotAckI2Cx Generate I2Cx bus Not Acknowledge condition.

OpenI2Cx Configure the SSPx module.

putcI2Cx Write a single byte to the I2Cx bus.

putsI2Cx Write a string to the I2Cx bus operating in either Master or Slave mode.

ReadI2Cx Read a single byte from the I2Cx bus.

RestartI2Cx Generate an I2Cx bus Restart condition.

StartI2Cx Generate an I2Cx bus Start condition.

StopI2Cx Generate an I2Cx bus Stop condition.

WriteI2Cx Write a single byte to the I2Cx bus.

MPLAB® C18 C Compiler Libraries

DS51297F-page 22 © 2005 Microchip Technology Inc.

The following functions are also provided for interfacing with an EE memory device
such as the Microchip 24LC01B using the I2C interface:

TABLE 2-5: INTERFACE FUNCTIONS FOR EE MEMORY DEVICES

2.4.1 Function Descriptions

Function Description

EEAckPollingx Generate the Acknowledge polling sequence.

EEByteWritex Write a single byte.

EECurrentAddReadx Read a single byte from the next location.

EEPageWritex Write a string of data.

EERandomReadx Read a single byte from an arbitrary address.

EESequentialReadx Read a string of data.

AckI2C
AckI2C1
AckI2C2
Function: Generate I2C bus Acknowledge condition.

Include: i2c.h

Prototype: void AckI2C(void);
void AckI2C1(void);
void AckI2C2(void);

Remarks: This function generates an I2Cx bus Acknowledge condition.

File Name: i2c_ack.c
i2c1ack.c
i2c2ack.c

CloseI2C

CloseI2C1
CloseI2C2
Function: Disable the SSPx module.

Include: i2c.h

Prototype: void CloseI2C(void);
void CloseI2C1(void);
void CloseI2C2(void);

Remarks: This function disables the SSPx module.

File Name: i2c_close.c
i2c1close.c
i2c2close.c

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 23

DataRdyI2C

DataRdyI2C1
DataRdyI2C2
Function: Is data available in the I2Cx buffer?

Include: i2c.h

Prototype: unsigned char DataRdyI2C(void);
unsigned char DataRdyI2C1(void);
unsigned char DataRdyI2C2(void);

Remarks: Determines if there is a byte to be read in the SSPx buffer.

Return Value: 1 if there is data in the SSPx buffer
0 if there is no data in the SSPx buffer

File Name: i2c_dtrd.c
i2c1dtrd.c
i2c2dtrd.c

Code Example: if (DataRdyI2C())
{
 var = getcI2C();
}

getcI2C

getcI2C1
getcI2C2
getcI2Cx is defined as ReadI2Cx. See ReadI2Cx.

getsI2C

getsI2C1
getsI2C2
Function: Read a fixed length string from the I2Cx bus operating in master I2C

mode.

Include: i2c.h

Prototype: unsigned char getsI2C(
 unsigned char * rdptr,
 unsigned char length);
unsigned char getsI2C1(
 unsigned char * rdptr,
 unsigned char length);
unsigned char getsI2C2(
 unsigned char * rdptr,
 unsigned char length);

Arguments: rdptr
Character type pointer to PICmicro MCU RAM for storage of data read
from I2C device.
length
Number of bytes to read from I2Cx device.

Remarks: This routine reads a predefined data string length from the I2Cx bus.

MPLAB® C18 C Compiler Libraries

DS51297F-page 24 © 2005 Microchip Technology Inc.

Return Value: 0 if all bytes have been sent
-1 if a bus collision has occurred

File Name: i2c_gets.c
i2c1gets.c
i2c2gets.c

Code Example: unsigned char string[15];
getsI2C(string, 15);

IdleI2C

IdleI2C1
IdleI2C2
Function: Loop until I2Cx bus is Idle.

Include: i2c.h

Prototype: void IdleI2C(void);

Remarks: This function checks the state of the I2C peripheral and waits for the
bus to become available. The IdleI2C function is required since the
hardware I2C peripheral does not allow for spooling of bus sequences.
The I2C peripheral must be in an Idle state before an I2C operation can
be initiated or a write collision will be generated.

File Name: idlei2c.c

NotAckI2C

NotAckI2C1
NotAckI2C2
Function: Generate I2Cx bus Not Acknowledge condition.

Include: i2c.h

Prototype: void NotAckI2C(void);
void NotAckI2C1(void);
void NotAckI2C2(void);

Remarks: This function generates an I2Cx bus Not Acknowledge condition.

File Name: i2c_nack.c
i2c1nack.c
i2c2nack.c

getsI2C

getsI2C1
getsI2C2 (Continued)

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 25

OpenI2C

OpenI2C1
OpenI2C2
Function: Configure the SSPx module.

Include: i2c.h

Prototype: void OpenI2C(unsigned char sync_mode,
 unsigned char slew);
void OpenI2C1(unsigned char sync_mode,
 unsigned char slew);
void OpenI2C2(unsigned char sync_mode,
 unsigned char slew);

Arguments: sync_mode
One of the following values, defined in i2c.h:

SLAVE_7 I2C Slave mode, 7-bit address
SLAVE_10 I2C Slave mode, 10-bit address
MASTER I2C Master mode

slew
One of the following values, defined in i2c.h:

SLEW_OFF Slew rate disabled for 100 kHz mode
SLEW_ON Slew rate enabled for 400 kHz mode

Remarks: OpenI2Cx resets the SSPx module to the POR state and then
configures the module for Master/Slave mode and the selected slew
rate.

File Name: i2c_open.c
i2c1open.c
i2c2open.c

Code Example: OpenI2C(MASTER, SLEW_ON);

putcI2C

putcI2C1
putcI2C2
putcI2Cx is defines as WriteI2Cx. See WriteI2Cx.

MPLAB® C18 C Compiler Libraries

DS51297F-page 26 © 2005 Microchip Technology Inc.

putsI2C

putsI2C1
putsI2C2
Function: Write a data string to the I2Cx bus operating in either Master or Slave

mode.

Include: i2c.h

Prototype: unsigned char putsI2C(
 unsigned char *wrptr);
unsigned char putsI2C1(
 unsigned char *wrptr);
unsigned char putsI2C2(
 unsigned char *wrptr);

Arguments: wrptr
Pointer to data that will be written to the I2C bus.

Remarks: This routine writes a data string to the I2Cx bus until a null character is
reached. The null character itself is not transmitted. This routine can
operate in both Master or Slave mode.

Return Value: Master I2C mode:
0 if the null character was reached in the data string
-2 if the slave I2Cx device responded with a NOT ACK
-3 if a write collision occurred
Slave I2C mode:
0 if the null character was reached in the data string
-2 if the master I2Cx device responded with a NOT ACK which
terminated the data transfer

File Name: i2c_puts.c
i2c1puts.c
i2c2puts.c

Code Example: unsigned char string[] = “data to send”;
putsI2C(string);

ReadI2C

ReadI2C1
ReadI2C2
getcI2C

getcI2C1
getcI2C2
Function: Read a single byte from the I2Cx bus.

Include: i2c.h

Prototype: unsigned char ReadI2C (void);
unsigned char ReadI2C1 (void);
unsigned char ReadI2C2 (void);
unsigned char getcI2C (void);
unsigned char getcI2C1 (void);
unsigned char getcI2C2 (void);

Remarks: This function reads in a single byte from the I2Cx bus. getcI2Cx is
defined to be ReadI2Cx in i2c.h.

Return Value: The data byte read from the I2Cx bus.

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 27

File Name: i2c_read.c
i2c1read.c
i2c2read.c
define in i2c.h
define in i2c.h
define in i2c.h

Code Example: unsigned char value;
value = ReadI2C();

RestartI2C

RestartI2C1
RestartI2C2
Function: Generate an I2Cx bus Restart condition.

Include: i2c.h

Prototype: void RestartI2C(void);
void RestartI2C1(void);
void RestartI2C2(void);

Remarks: This function generates an I2Cx bus Restart condition.

File Name: i2c_rstr.c
i2c1rstr.c
i2c2rstr.c

StartI2C

StartI2C1
StartI2C2
Function: Generate an I2Cx bus Start condition.

Include: i2c.h

Prototype: void StartI2C(void);
void StartI2C1(void);
void StartI2C2(void);

Remarks: This function generates a I2Cx bus Start condition.

File Name: i2c_start.c
i2c1start.c
i2c2start.c

ReadI2C

ReadI2C1
ReadI2C2
getcI2C

getcI2C1
getcI2C2 (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 28 © 2005 Microchip Technology Inc.

StopI2C

StopI2C1
StopI2C2
Function: Generate I2Cx bus Stop condition.

Include: i2c.h

Prototype: void StopI2C(void);
void StopI2C1(void);
void StopI2C2(void);

Remarks: This function generates an I2Cx bus Stop condition.

File Name: i2c_stop.c
i2c1stop.c
i2c2stop.c

WriteI2C

WriteI2C1
WriteI2C2
putcI2C

putcI2C1
putcI2C2
Function: Write a single byte to the I2Cx bus device.

Include: i2c.h

Prototype: unsigned char WriteI2C(
 unsigned char data_out);
unsigned char WriteI2C1(
 unsigned char data_out);
unsigned char WriteI2C2(
 unsigned char data_out);
unsigned char putcI2C(
 unsigned char data_out);
unsigned char putcI2C1(
 unsigned char data_out);
unsigned char putcI2C2(
 unsigned char data_out);

Arguments: data_out
A single data byte to be written to the I2Cx bus device.

Remarks: This function writes out a single data byte to the I2Cx bus device.
putcI2Cx is defined to be WriteI2Cx in i2c.h.

Return Value: 0 if the write was successful
-1 if there was a write collision

File Name: i2c_write.c
i2c1write.c
i2c2write.c
#define in i2c.h
#define in i2c.h
#define in i2c.h

Code Example: WriteI2C(‘a’);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 29

2.4.2 EE Memory Device Interface Function Descriptions

EEAckPolling

EEAckPolling1
EEAckPolling2
Function: Generate the Acknowledge polling sequence for Microchip EE I2C

memory devices.

Include: i2c.h

Prototype: unsigned char EEAckPolling(
 unsigned char control);
unsigned char EEAckPolling1(
 unsigned char control);
unsigned char EEAckPolling2(
 unsigned char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function is used to generate the Acknowledge polling sequence for
EE I2C memory devices that utilize Acknowledge polling.

Return Value: 0 if there were no errors
-1 if there was a bus collision error
-3 if there was a write collision error

File Name: i2c_ecap.c
i2c1ecap.c
i2c2ecap.c

Code Example: temp = EEAckPolling(0xA0);

EEByteWrite

EEByteWrite1
EEByteWrite2
Function: Write a single byte to the I2Cx bus.

Include: i2c.h

Prototype: unsigned char EEByteWrite(
 unsigned char control,
 unsigned char address,
 unsigned char data);
unsigned char EEByteWrite1(
 unsigned char control,
 unsigned char address,
 unsigned char data);
unsigned char EEByteWrite2(
 unsigned char control,
 unsigned char address,
 unsigned char data);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
data
Data to write to EEPROM address specified in function parameter
address.

MPLAB® C18 C Compiler Libraries

DS51297F-page 30 © 2005 Microchip Technology Inc.

Remarks: This function writes a single data byte to the I2Cx bus. This routine can
be used for any Microchip I2C EE memory device which requires only 1
byte of address information.

Return Value: 0 if there were no errors
-1 if there was a bus collision error
-2 if there was a NOT ACK error
-3 if there was a write collision error

File Name: i2c_ecbw.c
i2c1ecbw.c
i2c2ecbw.c

Code Example: temp = EEByteWrite(0xA0, 0x30, 0xA5);

EECurrentAddRead

EECurrentAddRead1
EECurrentAddRead2
Function: Read a single byte from the I2Cx bus.

Include: i2c.h

Prototype: unsigned int EECurrentAddRead(
 unsigned char control);
unsigned int EECurrentAddRead1(
 unsigned char control);
unsigned int EECurrentAddRead2(
 unsigned char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function reads in a single byte from the I2Cx bus. The address
location of the data to read is that of the current pointer within the I2C
EE device. The memory device contains an address counter that
maintains the address of the last word accessed, incremented by one.

Return Value: -1 if a bus collision error occurred
-2 if a NOT ACK error occurred
-3 if a write collision error occurred
Otherwise, the result is returned as an unsigned 16-bit quantity. Since
the buffer itself is only 8-bits wide, this means that the Most Significant
Byte will be zero and the Least Significant Byte will contain the read
buffer contents.

File Name: i2c_eecr.c
i2c1eecr.c
i2c2eecr.c

Code Example: temp = EECurrentAddRead(0xA1);

EEByteWrite

EEByteWrite1
EEByteWrite2 (Continued)

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 31

EEPageWrite

EEPageWrite1
EEPageWrite2
Function: Write a string of data to the EE device from the I2Cx bus.

Include: i2c.h

Prototype: unsigned char EEPageWrite(
 unsigned char control,
 unsigned char address,
 unsigned char * wrptr);
unsigned char EEPageWrite1(
 unsigned char control,
 unsigned char address,
 unsigned char * wrptr);
unsigned char EEPageWrite2(
 unsigned char control,
 unsigned char address,
 unsigned char * wrptr);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
wrptr
Character type pointer in PICmicro MCU RAM. The data objects
pointed to by wrptr will be written to the EE device.

Remarks: This function writes a null terminated string of data to the I2C EE
memory device. The null character itself is not transmitted.

Return Value: 0 if there were no errors
-1 if there was a bus collision error
-2 if there was a NOT ACK error
-3 if there was a write collision error

File Name: i2c_eepw.c
i2c1eepw.c
i2c2eepw.c

Code Example: temp = EEPageWrite(0xA0, 0x70, wrptr);

MPLAB® C18 C Compiler Libraries

DS51297F-page 32 © 2005 Microchip Technology Inc.

EERandomRead

EERandomRead1
EERandomRead2
Function: Read a single byte from the I2Cx bus.

Include: i2c.h

Prototype: unsigned int EERandomRead(
 unsigned char control,
 unsigned char address);
unsigned int EERandomRead1(
 unsigned char control,
 unsigned char address);
unsigned int EERandomRead2(
 unsigned char control,
 unsigned char address);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.

Remarks: This function reads in a single byte from the I2Cx bus. The routine can
be used for Microchip I2C EE memory devices which only require 1
byte of address information.

Return Value: The return value contains the value read in the Least Significant Byte
and the error condition in the Most Significant Byte. The error condition
is:
-1 if there was a bus collision error
-2 if there was a NOT ACK error
-3 if there was a write collision error

File Name: i2c_eerr.c
i2c1eerr.c
i2c2eerr.c

Code Example: unsigned int temp;
temp = EERandomRead(0xA0,0x30);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 33

EESequentialRead

EESequentialRead1
EESequentialRead2
Function: Read a string of data from the I2Cx bus.

Include: i2c.h

Prototype: unsigned char EESequentialRead(
 unsigned char control,
 unsigned char address,
 unsigned char * rdptr,
 unsigned char length);
unsigned char EESequentialRead1(
 unsigned char control,
 unsigned char address,
 unsigned char * rdptr,
 unsigned char length);
unsigned char EESequentialRead2(
 unsigned char control,
 unsigned char address,
 unsigned char * rdptr,
 unsigned char length);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
rdptr
Character type pointer to PICmicro MCU RAM area for placement of
data read from EEPROM device.
length
Number of bytes to read from EEPROM device.

Remarks: This function reads in a predefined string length of data from the I2Cx
bus. The routine can be used for Microchip I2C EE memory devices
which only require 1 byte of address information.

Return Value: 0 if there were no errors
-1 if there was a bus collision error
-2 if there was a NOT ACK error
-3 if there was a write collision error

File Name: i2c_eesr.c
i2c1eesr.c
i2c2eesr.c

Code Example: unsigned char err;
err = EESequentialRead(0xA0,
 0x70,
 rdptr,
 15);

MPLAB® C18 C Compiler Libraries

DS51297F-page 34 © 2005 Microchip Technology Inc.

2.4.3 Example of Use

The following is a simple code example illustrating the SSP module configured for I2C
master communication. The routine illustrates I2C communications with a Microchip
24LC01B I2C EE memory device.

#include "p18cxx.h"
#include "i2c.h"

unsigned char arraywr[] = {1,2,3,4,5,6,7,8,0};
unsigned char arrayrd[20];

//***
void main(void)
{
 OpenI2C(MASTER, SLEW_ON);// Initialize I2C module
 SSPADD = 9; //400kHz Baud clock(9) @16MHz
 //100kHz Baud clock(39) @16MHz

 while(1)
 {
 EEByteWrite(0xA0, 0x30, 0xA5);
 EEAckPolling(0xA0);
 EECurrentAddRead(0xA0);
 EEPageWrite(0xA0, 0x70, arraywr);
 EEAckPolling(0xA0);
 EESequentialRead(0xA0, 0x70, arrayrd, 20);
 EERandomRead(0xA0,0x30);
 }
}

2.5 I/O PORT FUNCTIONS

PORTB is supported with the following functions:

TABLE 2-6: I/O PORT FUNCTIONS

Function Description

ClosePORTB Disable the interrupts and internal pull-up resistors for PORTB.

CloseRBxINT Disable interrupts for PORTB pin x .

DisablePullups Disable the internal pull-up resistors on PORTB.

EnablePullups Enable the internal pull-up resistors on PORTB.

OpenPORTB Configure the interrupts and internal pull-up resistors on PORTB.

OpenRBxINT Enable interrupts for PORTB pin x .

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 35

2.5.1 Function Descriptions

ClosePORTB
Function: Disable the interrupts and internal pull-up resistors for PORTB.

Include: portb.h

Prototype: void ClosePORTB(void);

Remarks: This function disables the PORTB interrupt-on-change and the internal
pull-up resistors.

File Name: pbclose.c

CloseRB0INT
CloseRB1INT
CloseRB2INT
Function: Disable the interrupts for the specified PORTB pin.

Include: portb.h

Prototype: void CloseRB0INT(void);
void CloseRB1INT(void);
void CloseRB2INT(void);

Remarks: This function disables the PORTB interrupt-on-change.

File Name: rb0close.c
rb1close.c
rb2close.c

DisablePullups
Function: Disable the internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void DisablePullups(void);

Remarks: This function disables the internal pull-up resistors on PORTB.

File Name: pulldis.c

EnablePullups
Function: Enable the internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void EnablePullups(void);

Remarks: This function enables the internal pull-up resistors on PORTB.

File Name: pullen.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 36 © 2005 Microchip Technology Inc.

OpenPORTB
Function: Configure the interrupts and internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void OpenPORTB(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file portb.h.
Interrupt-on-change:

PORTB_CHANGE_INT_ON Interrupt enabled
PORTB_CHANGE_INT_OFF Interrupt disabled

Enable Pullups:
PORTB_PULLUPS_ON pull-up resistors enabled
PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-up resistors on
PORTB.

File Name: pbopen.c

Code Example: OpenPORTB(PORTB_CHANGE_INT_ON & PORTB_PULLUPS_ON);

OpenRB0INT
OpenRB1INT
OpenRB2INT
Function: Enable interrupts for the specified PORTB pin.

Include: portb.h

Prototype: void OpenRB0INT(unsigned char config);
void OpenRB1INT(unsigned char config);
void OpenRB2INT(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file portb.h.
Interrupt-on-change:

PORTB_CHANGE_INT_ON Interrupt enabled
PORTB_CHANGE_INT_OFF Interrupt disabled

Interrupt-on-edge:
RISING_EDGE_INT Interrupt on rising edge
FALLING_EDGE_INT Interrupt on falling edge

Enable Pullups:
PORTB_PULLUPS_ON pull-up resistors enabled
PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-up resistors on
PORTB.

File Name: rb0open.c
rb1open.c
rb2open.c

Code Example: OpenRB0INT(PORTB_CHANGE_INT_ON & RISING_EDGE_INT &
PORTB_PULLUPS_ON);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 37

2.6 MICROWIRE FUNCTIONS

The following routines are provided for devices with a single Microwire peripheral:

TABLE 2-7: SINGLE MICROWIRE PERIPHERAL FUNCTIONS

The following routines are provided for devices with multiple Microwire peripherals:

TABLE 2-8: MULTIPLE MICROWIRE PERIPHERAL FUNCTIONS

2.6.1 Function Descriptions

Function Description

CloseMwire Disable the SSP module used for Microwire communication.

DataRdyMwire Indicate completion of the internal write cycle.

getcMwire Read a byte from the Microwire device.

getsMwire Read a string from the Microwire device.

OpenMwire Configure the SSP module for Microwire use.

putcMwire Write a byte to the Microwire device.

ReadMwire Read a byte from the Microwire device.

WriteMwire Write a byte to the Microwire device.

Function Description

CloseMwirex Disable the SSPx module used for Microwire communication.

DataRdyMwirex Indicate completion of the internal write cycle.

getcMwirex Read a byte from the Microwire device.

getsMwirex Read a string from the Microwire device.

OpenMwirex Configure the SSPx module for Microwire use.

putcMwirex Write a byte to the Microwire device.

ReadMwirex Read a byte from the Microwire device.

WriteMwirex Write a byte to the Microwire device.

CloseMwire

CloseMwire1
CloseMwire2
Function: Disable the SSPx module.

Include: mwire.h

Prototype: void CloseMwire(void);
void CloseMwire1(void);
void CloseMwire2(void);

Remarks: Pin I/O returns under control of the TRISC and LATC register settings.

File Name: mw_close.c
mw1close.c
mw2close.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 38 © 2005 Microchip Technology Inc.

DataRdyMwire

DataRdyMwire1
DataRdyMwire2
Function: Indicate whether the Microwirex device has completed the internal

write cycle.

Include: mwire.h

Prototype: unsigned char DataRdyMwire(void);
unsigned char DataRdyMwire1(void);
unsigned char DataRdyMwire2(void);

Remarks: Determines if Microwirex device is ready.

Return Value: 1 if the Microwirex device is ready
0 if the internal write cycle is not complete or a bus error occurred

File Name: mw_drdy.c
mw1drdy.c
mw2drdy.c

Code Example: while (!DataRdyMwire());

getcMwire

getcMwire1
getcMwire2
getcMwirex is defined as ReadMwirex. See ReadMwirex.

getsMwire

getsMwire1
getsMwire2
Function: Read a string from the Microwirex device.

Include: mwire.h

Prototype: void getsMwire(unsigned char * rdptr,
 unsigned char length);
void getsMwire1(unsigned char * rdptr,
 unsigned char length);
void getsMwire2(unsigned char * rdptr,
 unsigned char length);

Arguments: rdptr
Pointer to PICmicro MCU RAM for placement of data read from
Microwirex device.
length
Number of bytes to read from Microwirex device.

Remarks: This function is used to read a predetermined length of data from a
Microwirex device. Before using this function, a Readx command with
the appropriate address must be issued.

File Name: mw_gets.c
mw1gets.c
mw2gets.c

Code Example: unsigned char arryrd[LENGTH];
putcMwire(READ);
putcMwire(address);
getsMwire(arrayrd, LENGTH);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 39

OpenMwire

OpenMwire1
OpenMwire2
Function: Configure the SSPx module.

Include: mwire.h

Prototype: void OpenMwire(
 unsigned char sync_mode);

Arguments: sync_mode
One of the following values defined in mwire.h:

MWIRE_FOSC_4 clock = FOSC/4
MWIRE_FOSC_16 clock = FOSC/16
MWIRE_FOSC_64 clock = FOSC/64
MWIRE_FOSC_TMR2 clock = TMR2 output/2

Remarks: OpenMwirex resets the SSPx module to the POR state and then
configures the module for Microwire communications.

File Name: mw_open.c
mw1open.c
mw2open.c

Code Example: OpenMwire(MWIRE_FOSC_16);

putcMwire

putcMwire1
putcMwire2
putcMwirex is defined as WriteMwirex. See WriteMwirex.

MPLAB® C18 C Compiler Libraries

DS51297F-page 40 © 2005 Microchip Technology Inc.

ReadMwire

ReadMwire1
ReadMwire2
getcMwire

getcMwire1
getcMwire2
Function: Read a byte from a Microwirex device.

Include: mwire.h

Prototype: unsigned char ReadMwire(
 unsigned char high_byte,
 unsigned char low_byte);
unsigned char ReadMwire1(
 unsigned char high_byte,
 unsigned char low_byte);
unsigned char ReadMwire2(
 unsigned char high_byte,
 unsigned char low_byte);
unsigned char getcMwire(
 unsigned char high_byte,
 unsigned char low_byte);
unsigned char getcMwire1(
 unsigned char high_byte,
 unsigned char low_byte);
unsigned char getcMwire2(
 unsigned char high_byte,
 unsigned char low_byte);

Arguments: high_byte
First byte of 16-bit instruction word.
low_byte
Second byte of 16-bit instruction word.

Remarks: This function reads in a single byte from a Microwirex device. The Start
bit, opcode and address compose the high and low bytes passed into
this function. getcMwirex is defined to be ReadMwirex in mwire.h.

Return Value: The return value is the data byte read from the Microwirex device.

File Name: mw_read.c
mw1read.c
mw2read.c
#define in mwire.h
#define in mwire.h
#define in mwire.h

Code Example: ReadMwire(0x03, 0x00);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 41

WriteMwire

WriteMwire1
WriteMwire2
putcMwire

putcMwire1
putcMwire2
Function: This function is used to write out a single data byte (one character).

Include: mwire.h

Prototype: unsigned char WriteMwire(
 unsigned char data_out);
unsigned char WriteMwire1(
 unsigned char data_out);
unsigned char WriteMwire2(
 unsigned char data_out);
unsigned char putcMwire(
 unsigned char data_out);
unsigned char putcMwire1(
 unsigned char data_out);
unsigned char putcMwire2(
 unsigned char data_out);

Arguments: data_out
Single byte of data to write to Microwirex device.

Remarks: This function writes out single data byte to a Microwirex device utilizing
the SSPx module. putcMwirex is defined to be WriteMwirex in mwire.h.

Return Value: 0 if the write was successful
-1 if there was a write collision

File Name: mw_write.c
mw1write.c
mw2write.c
#define in mwire.h
#define in mwire.h
#define in mwire.h

Code Example: WriteMwire(0x55);

MPLAB® C18 C Compiler Libraries

DS51297F-page 42 © 2005 Microchip Technology Inc.

2.6.2 Example of Use

The following is a simple code example illustrating the SSP module communicating
with a Microchip 93LC66 Microwire EE memory device.

#include "p18cxxx.h"
#include "mwire.h"

// 93LC66 x 8
// FUNCTION Prototypes
void main(void);
void ew_enable(void);
void erase_all(void);
void busy_poll(void);
void write_all(unsigned char data);
void byte_read(unsigned char address);
void read_mult(unsigned char address,
 unsigned char *rdptr,
 unsigned char length);
void write_byte(unsigned char address,
 unsigned char data);

// VARIABLE Definitions
unsigned char arrayrd[20];
unsigned char var;

// DEFINE 93LC66 MACROS -- see datasheet for details
#define READ 0x0C
#define WRITE 0x0A
#define ERASE 0x0E
#define EWEN1 0x09
#define EWEN2 0x80
#define ERAL1 0x09
#define ERAL2 0x00
#define WRAL1 0x08
#define WRAL2 0x80
#define EWDS1 0x08
#define EWDS2 0x00
#define W_CS LATCbits.LATC2

void main(void)
{
 TRISCbits.TRISC2 = 0;
 W_CS = 0; //ensure CS is negated
 OpenMwire(MWIRE_FOSC_16); //enable SSP peripheral
 ew_enable(); //send erase/write enable
 write_byte(0x13, 0x34); //write byte (address, data)
 busy_poll();
 Nop();
 byte_read(0x13); //read single byte (address)
 read_mult(0x10, arrayrd, 10); //read multiple bytes
 erase_all(); //erase entire array
 CloseMwire(); //disable SSP peripheral
}

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 43

void ew_enable(void)
{
 W_CS = 1; //assert chip select
 putcMwire(EWEN1); //enable write command byte 1
 putcMwire(EWEN2); //enable write command byte 2
 W_CS = 0; //negate chip select
}
void busy_poll(void)
{
 W_CS = 1;
 while(! DataRdyMwire());
 W_CS = 0;
}

void write_byte(unsigned char address,
 unsigned char data)
{
 W_CS = 1;
 putcMwire(WRITE); //write command
 putcMwire(address); //address
 putcMwire(data); //write single byte
 W_CS = 0;
}

void byte_read(unsigned char address)
{
 W_CS = 1;
 getcMwire(READ,address); //read one byte
 W_CS = 0;
}

void read_mult(unsigned char address,
 unsigned char *rdptr,
 unsigned char length)
{
 W_CS = 1;
 putcMwire(READ); //read command
 putcMwire(address); //address (A7 - A0)
 getsMwire(rdptr, length); //read multiple bytes
 W_CS = 0;
}

void erase_all(void)
{
 W_CS = 1;
 putcMwire(ERAL1); //erase all command byte 1
 putcMwire(ERAL2); //erase all command byte 2
 W_CS = 0;
}

MPLAB® C18 C Compiler Libraries

DS51297F-page 44 © 2005 Microchip Technology Inc.

2.7 PULSE-WIDTH MODULATION FUNCTIONS

The PWM peripheral is supported with the following functions:

TABLE 2-9: PWM FUNCTIONS

Note 1: The enhanced PWM functions are only available on those devices with an
ECCPxCON register.

2.7.1 Function Descriptions

Function Description

ClosePWMx Disable PWM channel x.

OpenPWMx Configure PWM channel x.

SetDCPWMx Write a new duty cycle value to PWM channel x.

SetOutputPWMx Sets the PWM output configuration bits for ECCP x.

CloseEPWMx(1) Disable enhanced PWM channel x.

OpenEPWMx(1) Configure enhanced PWM channel x.

SetDCEPWMx(1) Write a new duty cycle value to enhanced PWM channel x.

SetOutputEPWMx(1) Sets the enhanced PWM output configuration bits for ECCP x.

ClosePWM1
ClosePWM2
ClosePWM3
ClosePWM4
ClosePWM5
CloseEPWM1
Function: Disable PWM channel.

Include: pwm.h

Prototype: void ClosePWM1(void);
void ClosePWM2(void);
void ClosePWM3(void);
void ClosePWM4(void);
void ClosePWM5(void);
void CloseEPWM1(void);

Remarks: This function disables the specified PWM channel.

File Name: pw1close.c
pw2close.c
pw3close.c
pw4close.c
pw5close.c
ew1close.c

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 45

OpenPWM1
OpenPWM2
OpenPWM3
OpenPWM4
OpenPWM5
OpenEPWM1
Function: Configure PWM channel.

Include: pwm.h

Prototype: void OpenPWM1(char period);
void OpenPWM2(char period);
void OpenPWM3(char period);
void OpenPWM4(char period);
void OpenPWM5(char period);
void OpenEPWM1(char period);

Arguments: period
Can be any value from 0x00 to 0xff. This value determines the PWM
frequency by using the following formula:
PWM period =[(period) + 1] x 4 x TOSC x TMR2 prescaler

Remarks: This function configures the specified PWM channel for period and for
time base. PWM uses only Timer2.

In addition to opening the PWM, Timer2 must also be opened with an
OpenTimer2(...) statement before the PWM will operate.

File Name: pw1open.c
pw2open.c
pw3open.c
pw4open.c
pw5open.c
ew1open.c

Code Example: OpenPWM1(0xff);

MPLAB® C18 C Compiler Libraries

DS51297F-page 46 © 2005 Microchip Technology Inc.

SetDCPWM1
SetDCPWM2
SetDCPWM3
SetDCPWM4
SetDCPWM5
SetDCEPWM1
Function: Write a new duty cycle value to the specified PWM channel duty-cycle

registers.

Include: pwm.h

Prototype: void SetDCPWM1(unsigned int dutycycle);
void SetDCPWM2(unsigned int dutycycle);
void SetDCPWM3(unsigned int dutycycle);
void SetDCPWM4(unsigned int dutycycle);
void SetDCPWM5(unsigned int dutycycle);
void SetDCEPWM1(unsigned int dutycycle);

Arguments: dutycycle
The value of dutycycle can be any 10-bit number. Only the lower
10-bits of dutycycle are written into the duty cycle registers. The duty
cycle, or more specifically the high time of the PWM waveform, can be
calculated from the following formula:
 PWM x Duty cycle = (DCx<9:0>) x TOSC

where DCx<9:0> is the 10-bit value specified in the call to this function.

Remarks: This function writes the new value for dutycycle to the specified PWM
channel duty cycle registers.

The maximum resolution of the PWM waveform can be calculated from
the period using the following formula:
 Resolution (bits) = log(FOSC/Fpwm) / log(2)

File Name: pw1setdc.c
pw2setdc.c
pw3setdc.c
pw4setdc.c
pw5setdc.c
ew1setdc.c

Code Example: SetDCPWM1(0);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 47

SetOutputPWM1
SetOutputPWM2
SetOutputPWM3
SetOutputEPWM1
Function: Sets the PWM output configuration bits for ECCP.

Include: pwm.h

Prototype: void SetOutputPWM1 (
 unsigned char outputconfig,
 unsigned char outputmode);
void SetOutputPWM2 (
 unsigned char outputconfig,
 unsigned char outputmode);
void SetOutputPWM3 (
 unsigned char outputconfig,
 unsigned char outputmode);
void SetOutputEPWM1 (
 unsigned char outputconfig,
 unsigned char outputmode);

Arguments: outputconfig
The value of outputconfig can be any one of the following values
(defined in pwm.h):

SINGLE_OUT single output
FULL_OUT_FWD full-bridge output forward
HALF_OUT half-bridge output
FULL_OUT_REV full-bridge output reverse

outputmode
The value of outputmode can be any one of the following values
(defined in pwm.h):

PWM_MODE_1 P1A and P1C active-high,
P1B and P1D active-high

PWM_MODE_2 P1A and P1C active-high,
P1B and P1D active-low

PWM_MODE_3 P1A and P1C active-low,
P1B and P1D active-high

PWM_MODE_4 P1A and P1C active-low,
P1B and P1D active-low

Remarks: This is only applicable to those devices with Extended or Enhanced
CCP (ECCP).

File Name: pw1setoc.c
pw2setoc.c
pw3setoc.c
ew1setoc.c

Code Example: SetOutputPWM1 (SINGLE_OUT, PWM_MODE_1);

MPLAB® C18 C Compiler Libraries

DS51297F-page 48 © 2005 Microchip Technology Inc.

2.8 SPI™ FUNCTIONS

The following routines are provided for devices with a single SPI peripheral:

TABLE 2-10: SINGLE SPI™ PERIPHERAL FUNCTIONS

The following routines are provided for devices with multiple SPI peripherals:

TABLE 2-11: MULTIPLE SPI™ PERIPHERAL FUNCTIONS

Function Description

CloseSPI Disable the SSP module used for SPI™ communications.

DataRdySPI Determine if a new value is available from the SPI buffer.

getcSPI Read a byte from the SPI bus.

getsSPI Read a string from the SPI bus.

OpenSPI Initialize the SSP module used for SPI communications.

putcSPI Write a byte to the SPI bus.

putsSPI Write a string to the SPI bus.

ReadSPI Read a byte from the SPI bus.

WriteSPI Write a byte to the SPI bus.

Function Description

CloseSPIx Disable the SSPx module used for SPI™ communications.

DataRdySPIx Determine if a new value is available from the SPIx buffer.

getcSPIx Read a byte from the SPIx bus.

getsSPIx Read a string from the SPIx bus.

OpenSPIx Initialize the SSPx module used for SPI communications.

putcSPIx Write a byte to the SPIx bus.

putsSPIx Write a string to the SPIx bus.

ReadSPIx Read a byte from the SPIx bus.

WriteSPIx Write a byte to the SPIx bus.

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 49

2.8.1 Function Descriptions

CloseSPI

CloseSPI1
CloseSPI2
Function: Disable the SSPx module.

Include: spi.h

Prototype: void CloseSPI(void);
void CloseSPI1(void);
void CloseSPI2(void);

Remarks: This function disables the SSPx module. Pin I/O returns under the
control of the appropriate TRIS and LAT registers.

File Name: spi_clos.c
spi1clos.c
spi2clos.c

DataRdySPI

DataRdySPI1
DataRdySPI2
Function: Determine if the SSPBUFx contains data.

Include: spi.h

Prototype: unsigned char DataRdySPI(void);
unsigned char DataRdySPI1(void);
unsigned char DataRdySPI2(void);

Remarks: This function determines if there is a byte to be read from the SSPBUFx
register.

Return Value: 0 if there is no data in the SSPBUFx register
1 if there is data in the SSPBUFx register

File Name: spi_dtrd.c
spi1dtrd.c
spi2dtrd.c

Code Example: while (!DataRdySPI());

getcSPI

getcSPI1
getcSPI2
getcSPIx is defined as ReadSPIx. See ReadSPIx.

MPLAB® C18 C Compiler Libraries

DS51297F-page 50 © 2005 Microchip Technology Inc.

getsSPI

getsSPI1
getsSPI2
Function: Read a string from the SPIx bus.

Include: spi.h

Prototype: void getsSPI(unsigned char *rdptr,
 unsigned char length);
void getsSPI1(unsigned char *rdptr,
 unsigned char length);
void getsSPI2(unsigned char *rdptr,
 unsigned char length);

Arguments: rdptr
Pointer to location to store data read from SPIx device.
length
Number of bytes to read from SPIx device.

Remarks: This function reads in a predetermined data string length from the SPIx
bus.

File Name: spi_gets.c
spi1gets.c
spi2gets.c

Code Example: unsigned char wrptr[10];
getsSPI(wrptr, 10);

OpenSPI

OpenSPI1
OpenSPI2
Function: Initialize the SSPx module.

Include: spi.h

Prototype: void OpenSPI(unsigned char sync_mode,
 unsigned char bus_mode,
 unsigned char smp_phase);
void OpenSPI1(unsigned char sync_mode,
 unsigned char bus_mode,
 unsigned char smp_phase);
void OpenSPI2(unsigned char sync_mode,
 unsigned char bus_mode,
 unsigned char smp_phase);

Arguments: sync_mode
One of the following values, defined in spi.h:
SPI_FOSC_4 SPI Master mode, clock = FOSC/4
SPI_FOSC_16 SPI Master mode, clock = FOSC/16
SPI_FOSC_64 SPI Master mode, clock = FOSC/64
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output/2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled

bus_mode
One of the following values, defined in spi.h:
MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 51

smp_phase
One of the following values, defined in spi.h:
SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Remarks: This function sets up the SSPx module for use with a SPIx bus device.

File Name: spi_open.c
spi1open.c
spi2open.c

Code Example: OpenSPI(SPI_FOSC_16, MODE_00, SMPEND);

putcSPI

putcSPI1
putcSPI2
putcSPIx is defined as WriteSPIx. See WriteSPIx.

putsSPI

putsSPI1
putsSPI2
Function: Write a string to the SPIx bus.

Include: spi.h

Prototype: void putsSPI(unsigned char *wrptr);
void putsSPI1(unsigned char *wrptr);
void putsSPI2(unsigned char *wrptr);

Arguments: wrptr
Pointer to value that will be written to the SPIx bus.

Remarks: This function writes out a data string to the SPIx bus device. The rou-
tine is terminated by reading a null character in the data string (the null
character is not written to the bus).

File Name: spi_puts.c
spi1puts.c
spi2puts.c

Code Example: unsigned char wrptr[] = “Hello!”;
putsSPI(wrptr);

OpenSPI

OpenSPI1
OpenSPI2 (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 52 © 2005 Microchip Technology Inc.

ReadSPI

ReadSPI1
ReadSPI2
getcSPI

getcSPI1
getcSPI2
Function: Read a byte from the SPIx bus.

Include: spi.h

Prototype: unsigned char ReadSPI(void);
unsigned char ReadSPI1(void);
unsigned char ReadSPI2(void);
unsigned char getcSPI(void);
unsigned char getcSPI1(void);
unsigned char getcSPI2(void);

Remarks: This function initiates a SPIx bus cycle for the acquisition of a byte of
data. getcSPIx is defined to be ReadSPIx in spi.h.

Return Value: This function returns a byte of data read during a SPIx read cycle.

File Name: spi_read.c
spi1read.c
spi2read.c
#define in spi.h
#define in spi.h
#define in spi.h

Code Example: char x;
x = ReadSPI();

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 53

WriteSPI

WriteSPI1
WriteSPI2
putcSPI

putcSPI1

putcSPI2
Function: Write a byte to the SPIx bus.

Include: spi.h

Prototype: unsigned char WriteSPI(
 unsigned char data_out);
unsigned char WriteSPI1(
 unsigned char data_out);
unsigned char WriteSPI2(
 unsigned char data_out);
unsigned char putcSPI(
 unsigned char data_out);
unsigned char putcSPI1(
 unsigned char data_out);
unsigned char putcSPI2(
 unsigned char data_out);

Arguments: data_out
Value to be written to the SPIx bus.

Remarks: This function writes a single data byte out and then checks for a write
collision. putcSPIx is defined to be WriteSPIx in spi.h.

Return Value: 0 if no write collision occurred
-1 if a write collision occurred

File Name: spi_writ.c
spi1writ.c
spi2writ.c
#define in spi.h
#define in spi.h
#define in spi.h

Code Example: WriteSPI(‘a’);

MPLAB® C18 C Compiler Libraries

DS51297F-page 54 © 2005 Microchip Technology Inc.

2.8.2 Example of Use

The following example demonstrates the use of an SSP module to communicate with
a Microchip 25C080 SPI EE memory device.

#include <p18cxxx.h>
#include <spi.h>

// FUNCTION Prototypes
void main(void);
void set_wren(void);
void busy_polling(void);
unsigned char status_read(void);
void status_write(unsigned char data);
void byte_write(unsigned char addhigh,
 unsigned char addlow,
 unsigned char data);
void page_write(unsigned char addhigh,
 unsigned char addlow,
 unsigned char *wrptr);
void array_read(unsigned char addhigh,
 unsigned char addlow,
 unsigned char *rdptr,
 unsigned char count);
unsigned char byte_read(unsigned char addhigh,
 unsigned char addlow);

// VARIABLE Definitions
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0};

//25C040/080/160 page write size
unsigned char arrayrd[16];
unsigned char var;

#define SPI_CS LATCbits.LATC2

//**
void main(void)
{
 TRISCbits.TRISC2 = 0;
 SPI_CS = 1; // ensure SPI memory device
 // Chip Select is reset
 OpenSPI(SPI_FOSC_16, MODE_00, SMPEND);
 set_wren();
 status_write(0);

 busy_polling();
 set_wren();
 byte_write(0x00, 0x61, 'E');

 busy_polling();
 var = byte_read(0x00, 0x61);

 set_wren();
 page_write(0x00, 0x30, arraywr);
 busy_polling();

 array_read(0x00, 0x30, arrayrd, 16);
 var = status_read();

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 55

 CloseSPI();
 while(1);
}

void set_wren(void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_WREN); //send write enable command
 SPI_CS = 1; //negate chip select
}

void page_write (unsigned char addhigh,
 unsigned char addlow,
 unsigned char *wrptr)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 putsSPI(wrptr); //send data byte
 SPI_CS = 1; //negate chip select
}

void array_read (unsigned char addhigh,
 unsigned char addlow,
 unsigned char *rdptr,
 unsigned char count)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 getsSPI(rdptr, count); //read multiple bytes
 SPI_CS = 1;
}

void byte_write (unsigned char addhigh,
 unsigned char addlow,
 unsigned char data)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = putcSPI(data); //send data byte
 SPI_CS = 1; //negate chip select
}

unsigned char byte_read (unsigned char addhigh,
 unsigned char addlow)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = getcSPI(); //read single byte
 SPI_CS = 1;
 return (var);
}

MPLAB® C18 C Compiler Libraries

DS51297F-page 56 © 2005 Microchip Technology Inc.

unsigned char status_read (void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_RDSR); //send read status command
 var = getcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 return (var);
}

void status_write (unsigned char data)
{
 SPI_CS = 0;
 var = putcSPI(SPI_WRSR); //write status command
 var = putcSPI(data); //status byte to write
 SPI_CS = 1; //negate chip select
}

void busy_polling (void)
{
 do
 {
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_RDSR); //send read status command
 var = getcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 } while (var & 0x01); //stay in loop until !busy
}

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 57

2.9 TIMER FUNCTIONS

The timer peripherals are supported with the following functions:

TABLE 2-12: TIMER FUNCTIONS

2.9.1 Function Descriptions

Function Description

CloseTimerx Disable timer x.

OpenTimerx Configure and enable timer x.

ReadTimerx Read the value of timer x.

WriteTimerx Write a value into timer x.

CloseTimer0
CloseTimer1
CloseTimer2
CloseTimer3
CloseTimer4
Function: Disable the specified timer.

Include: timers.h

Prototype: void CloseTimer0(void);
void CloseTimer1(void);
void CloseTimer2(void);
void CloseTimer3(void);
void CloseTimer4(void);

Remarks: This function disables the interrupt and the specified timer.

File Name: t0close.c
t1close.c
t2close.c
t3close.c
t4close.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 58 © 2005 Microchip Technology Inc.

OpenTimer0
Function: Configure and enable timer0.

Include: timers.h

Prototype: void OpenTimer0(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file timers.h.

Enable Timer0 Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Timer Width:
T0_8BIT 8-bit mode
T0_16BIT 16-bit mode

Clock Source:
T0_SOURCE_EXT External clock source (I/O pin)
T0_SOURCE_INT Internal clock source (TOSC)

External Clock Trigger (for T0_SOURCE_EXT):
T0_EDGE_FALL External clock on falling edge
T0_EDGE_RISE External clock on rising edge

Prescale Value:
T0_PS_1_1 1:1 prescale
T0_PS_1_2 1:2 prescale
T0_PS_1_4 1:4 prescale
T0_PS_1_8 1:8 prescale
T0_PS_1_16 1:16 prescale
T0_PS_1_32 1:32 prescale
T0_PS_1_64 1:64 prescale
T0_PS_1_128 1:128 prescale
T0_PS_1_256 1:256 prescale

Remarks: This function configures timer0 according to the options specified and
then enables it.

File Name: t0open.c

Code Example: OpenTimer0(TIMER_INT_OFF &
 T0_8BIT &
 T0_SOURCE_INT &
 T0_PS_1_32);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 59

OpenTimer1
Function: Configure and enable timer1.

Include: timers.h

Prototype: void OpenTimer1(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file timers.h.

Enable Timer1 Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Timer Width:
T1_8BIT_RW 8-bit mode
T1_16BIT_RW 16-bit mode

Clock Source:
T1_SOURCE_EXT External clock source (I/O pin)
T1_SOURCE_INT Internal clock source (TOSC)

Prescaler:
T1_PS_1_1 1:1 prescale
T1_PS_1_2 1:2 prescale
T1_PS_1_4 1:4 prescale
T1_PS_1_8 1:8 prescale

Oscillator Use:
T1_OSC1EN_ON Enable Timer1 oscillator
T1_OSC1EN_OFF Disable Timer1 oscillator

Synchronize Clock Input:
T1_SYNC_EXT_ON Sync external clock input
T1_SYNC_EXT_OFF Don’t sync external clock input

Use With CCP:
For devices with 1 or 2 CCPs

T3_SOURCE_CCP Timer3 source for both CCP’s
T1_CCP1_T3_CCP2 Timer1 source for CCP1 and

Timer3 source for CCP2
T1_SOURCE_CCP Timer1 source for both CCP’s

For devices with more than 2 CCPs
T34_SOURCE_CCP Timer3 and Timer4 are sources for all

CCP’s
T12_CCP12_T34_CCP345 Timer1 and Timer2 are sources for

CCP1 and CCP2 and Timer3 and
Timer4 are sources for CCP3

 through CCP5
T12_CCP1_T34_CCP2345 Timer1 and Timer2 are sources for

CCP1 and Timer3 and Timer4 are
sources for CCP2 through CCP5

T12_SOURCE_CCP Timer1 and Timer2 are sources for all
CCP’s

Remarks: This function configures timer1 according to the options specified and
then enables it.

File Name: t1open.c

Code Example: OpenTimer1(TIMER_INT_ON &
 T1_8BIT_RW &
 T1_SOURCE_EXT &
 T1_PS_1_1 &
 T1_OSC1EN_OFF &
 T1_SYNC_EXT_OFF);

MPLAB® C18 C Compiler Libraries

DS51297F-page 60 © 2005 Microchip Technology Inc.

OpenTimer2
Function: Configure and enable timer2.

Include: timers.h

Prototype: void OpenTimer2(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file timers.h.

Enable Timer2 Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Prescale Value:
T2_PS_1_1 1:1 prescale
T2_PS_1_4 1:4 prescale
T2_PS_1_16 1:16 prescale

Postscale Value:
T2_POST_1_1 1:1 postscale
T2_POST_1_2 1:2 postscale
 : :
T2_POST_1_15 1:15 postscale
T2_POST_1_16 1:16 postscale

Use With CCP:
For devices with 1 or 2 CCPs

T3_SOURCE_CCP Timer3 source for both CCP’s
T1_CCP1_T3_CCP2 Timer1 source for CCP1 and

Timer3 source for CCP2
T1_SOURCE_CCP Timer1 source for both CCP’s

For devices with more than 2 CCPs
T34_SOURCE_CCP Timer3 and Timer4 are sources for all

CCP’s
T12_CCP12_T34_CCP345 Timer1 and Timer2 are sources for

CCP1 and CCP2 and Timer3 and
Timer4 are sources for CCP3

 through CCP5
T12_CCP1_T34_CCP2345 Timer1 and Timer2 are sources for

CCP1 and Timer3 and Timer4 are
sources for CCP2 through CCP5

T12_SOURCE_CCP Timer1 and Timer2 are sources for all
CCP’s

Remarks: This function configures timer2 according to the options specified and
then enables it.

File Name: t2open.c

Code Example: OpenTimer2(TIMER_INT_OFF &
 T2_PS_1_1 &
 T2_POST_1_8);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 61

OpenTimer3
Function: Configure and enable timer3.

Include: timers.h

Prototype: void OpenTimer3(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file timers.h.

Enable Timer3 Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Timer Width:
T3_8BIT_RW 8-bit mode
T3_16BIT_RW 16-bit mode

Clock Source:
T3_SOURCE_EXT External clock source (I/O pin)
T3_SOURCE_INT Internal clock source (TOSC)

Prescale Value:
T3_PS_1_1 1:1 prescale
T3_PS_1_2 1:2 prescale
T3_PS_1_4 1:4 prescale
T3_PS_1_8 1:8 prescale

Synchronize Clock Input:
T3_SYNC_EXT_ON Sync external clock input
T3_SYNC_EXT_OFF Don’t sync external clock input

Use With CCP:
For devices with 1 or 2 CCPs

T3_SOURCE_CCP Timer3 source for both CCP’s
T1_CCP1_T3_CCP2 Timer1 source for CCP1 and

Timer3 source for CCP2
T1_SOURCE_CCP Timer1 source for both CCP’s

For devices with more than 2 CCPs
T34_SOURCE_CCP Timer3 and Timer4 are sources for all

CCP’s
T12_CCP12_T34_CCP345 Timer1 and Timer2 are sources for

CCP1 and CCP2 and Timer3 and
Timer4 are sources for CCP3

 through CCP5
T12_CCP1_T34_CCP2345 Timer1 and Timer2 are sources for

CCP1 and Timer3 and Timer4 are
sources for CCP2 through CCP5

T12_SOURCE_CCP Timer1 and Timer2 are sources for all
CCP’s

Remarks: This function configures timer3 according to the options specified and
then enables it.

File Name: t3open.c

Code Example: OpenTimer3(TIMER_INT_ON &
 T3_8BIT_RW &
 T3_SOURCE_EXT &
 T3_PS_1_1 &
 T3_OSC1EN_OFF &
 T3_SYNC_EXT_OFF);

MPLAB® C18 C Compiler Libraries

DS51297F-page 62 © 2005 Microchip Technology Inc.

OpenTimer4
Function: Configure and enable timer4.

Include: timers.h

Prototype: void OpenTimer4(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file timers.h.

Enable Timer4 Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Prescale Value:
T4_PS_1_1 1:1 prescale
T4_PS_1_4 1:4 prescale
T4_PS_1_16 1:16 prescale

Postscale Value:
T4_POST_1_1 1:1 postscale
T4_POST_1_2 1:2 postscale
 : :
T4_POST_1_15 1:15 postscale
T4_POST_1_16 1:16 postscale

Remarks: This function configures timer4 according to the options specified and
then enables it.

File Name: t4open.c

Code Example: OpenTimer4(TIMER_INT_OFF &
 T4_PS_1_1 &
 T4_POST_1_8);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 63

ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer4
Function: Read the value of the specified timer.

Include: timers.h

Prototype: unsigned int ReadTimer0(void);
unsigned int ReadTimer1(void);
unsigned char ReadTimer2(void);
unsigned int ReadTimer3(void);
unsigned char ReadTimer4(void);

Remarks: These functions read the value of the respective timer register(s).
Timer0: TMR0L,TMR0H
Timer1: TMR1L,TMR1H
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer4: TMR4

Note: When using a timer in 8-bit mode that may be configured in
16-bit mode (e.g., timer0), the upper byte is not ensured to be zero. The
user may wish to cast the result to a char for correct results. For
example:

 // Example of reading a 16-bit result
 // from a 16-bit timer operating in
 // 8-bit mode:
 unsigned int result;
 result = (unsigned char) ReadTimer0();

Return Value: The current value of the timer.

File Name: t0read.c
t1read.c
t2read.c
t3read.c
t4read.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 64 © 2005 Microchip Technology Inc.

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTimer4
Function: Write a value into the specified timer.

Include: timers.h

Prototype: void WriteTimer0(unsigned int timer);
void WriteTimer1(unsigned int timer);
void WriteTimer2(unsigned char timer);
void WriteTimer3(unsigned int timer);
void WriteTimer4(unsigned char timer);

Arguments: timer
The value that will be loaded into the specified timer.

Remarks: These functions write a value to the respective timer register(s):
Timer0: TMR0L,TMR0H
Timer1: TMR1L,TMR1H
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer4: TMR4

File Name: t0write.c
t1write.c
t2write.c
t3write.c
t4write.c

Code Example: WriteTimer0(10000);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 65

2.9.2 Example of Use

#include <p18C452.h>
#include <timers.h>
#include <usart.h>
#include <stdlib.h>

void main(void)
{
 int result;
 char str[7];

 // configure timer0
 OpenTimer0(TIMER_INT_OFF &
 T0_SOURCE_INT &
 T0_PS_1_32);

 // configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX,
 25);

 while(1)
 {
 while(! PORTBbits.RB3); // wait for RB3 high
 result = ReadTimer0(); // read timer

 if(result > 0xc000) // exit loop if value
 break; // is out of range

 WriteTimer0(0); // restart timer

 ultoa(result, str); // convert timer to string
 putsUSART(str); // print string
 }

 CloseTimer0(); // close modules
 CloseUSART();
}

MPLAB® C18 C Compiler Libraries

DS51297F-page 66 © 2005 Microchip Technology Inc.

2.10 USART FUNCTIONS

The following routines are provided for devices with a single USART peripheral:

TABLE 2-13: SINGLE USART PERIPHERAL FUNCTIONS

The following routines are provided for devices with multiple USART peripherals:

TABLE 2-14: MULTIPLE USART PERIPHERAL FUNCTIONS

Function Description

BusyUSART Is the USART transmitting?

CloseUSART Disable the USART.

DataRdyUSART Is data available in the USART read buffer?

getcUSART Read a byte from the USART.

getsUSART Read a string from the USART.

OpenUSART Configure the USART.

putcUSART Write a byte to the USART.

putsUSART Write a string from data memory to the USART.

putrsUSART Write a string from program memory to the USART.

ReadUSART Read a byte from the USART.

WriteUSART Write a byte to the USART.

baudUSART Set the baud rate configuration bits for enhanced USART.

Function Description

BusyxUSART Is USART x transmitting?

ClosexUSART Disable USART x.

DataRdyxUSART Is data available in the read buffer of USART x?

getcxUSART Read a byte from USART x.

getsxUSART Read a string from USART x.

OpenxUSART Configure USART x.

putcxUSART Write a byte to USART x.

putsxUSART Write a string from data memory to USART x.

putrsxUSART Write a string from program memory to USART x.

ReadxUSART Read a byte from USART x.

WritexUSART Write a byte to USART x.

baudxUSART Set the baud rate configuration bits for enhanced USART x.

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 67

2.10.1 Function Descriptions

BusyUSART
Busy1USART
Busy2USART
Function: Is the USART transmitting?

Include: usart.h

Prototype: char BusyUSART(void);
char Busy1USART(void);
char Busy2USART(void);

Remarks: Returns a value indicating if the USART transmitter is currently busy.
This function should be used prior to commencing a new transmission.
BusyUSART should be used on parts with a single USART peripheral.
Busy1USART and Busy2USART should be used on parts with multiple
USART peripherals.

Return Value: 0 if the USART transmitter is idle
1 if the USART transmitter is in use

File Name: ubusy.c
u1busy.c
u2busy.c

Code Example: while (BusyUSART());

CloseUSART
Close1USART
Close2USART
Function: Disable the specified USART.

Include: usart.h

Prototype: void CloseUSART(void);
void Close1USART(void);
void Close2USART(void);

Remarks: This function disables the interrupts, transmitter and receiver for the
specified USART.
CloseUSART should be used on parts with a single USART peripheral.
Close1USART and Close2USART should be used on parts with
multiple USART peripherals.

File Name: uclose.c
u1close.c
u2close.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 68 © 2005 Microchip Technology Inc.

DataRdyUSART
DataRdy1USART
DataRdy2USART
Function: Is data available in the read buffer?

Include: usart.h

Prototype: char DataRdyUSART(void);
char DataRdy1USART(void);
char DataRdy2USART(void);

Remarks: This function returns the status of the RCIF flag bit in the PIR register.
DataRdyUSART should be used on parts with a single USART
peripheral. DataRdy1USART and DataRdy2USART should be used on
parts with multiple USART peripherals.

Return Value: 1 if data is available
0 if data is not available

File Name: udrdy.c
u1drdy.c
u2drdy.c

Code Example: while (!DataRdyUSART());

getcUSART
getc1USART
getc2USART
getcxUSART is defined as ReadxUSART. See ReadUSART

getsUSART
gets1USART
gets2USART
Function: Read a fixed-length string of characters from the specified USART.

Include: usart.h

Prototype: void getsUSART (char * buffer,
 unsigned char len);
void gets1USART (char * buffer,
 unsigned char len);
void gets2USART (char * buffer,
 unsigned char len);

Arguments: buffer
A pointer to the location where incoming characters are to be stored.
len
The number of characters to read from the USART.

Remarks: This function only works in 8-bit transmit/receive mode. This function
waits for and reads len number of characters out of the specified
USART. There is no time out when waiting for characters to arrive.
getsUSART should be used on parts with a single USART peripheral.
gets1USART and gets2USART should be used on parts with multiple
USART peripherals.

File Name: ugets.c
u1gets.c
u2gets.c

Code Example: char inputstr[10];
getsUSART(inputstr, 5);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 69

OpenUSART
Open1USART
Open2USART
Function: Configure the specified USART module.

Include: usart.h

Prototype: void OpenUSART(unsigned char config,
 unsigned int spbrg);
void Open1USART(unsigned char config,
 unsigned int spbrg);
void Open2USART(unsigned char config,
 unsigned int spbrg);

Arguments: config
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file usart.h.
Interrupt on Transmission:

USART_TX_INT_ON Transmit interrupt ON
USART_TX_INT_OFF Transmit interrupt OFF

Interrupt on Receipt:
USART_RX_INT_ON Receive interrupt ON
USART_RX_INT_OFF Receive interrupt OFF

USART Mode:
USART_ASYNCH_MODE Asynchronous Mode
USART_SYNCH_MODE Synchronous Mode

Transmission Width:
USART_EIGHT_BIT 8-bit transmit/receive
USART_NINE_BIT 9-bit transmit/receive

Slave/Master Select*:
USART_SYNC_SLAVE Synchronous Slave mode
USART_SYNC_MASTER Synchronous Master mode

Reception mode:
USART_SINGLE_RX Single reception
USART_CONT_RX Continuous reception

Baud rate:
USART_BRGH_HIGH High baud rate
USART_BRGH_LOW Low baud rate

* Applies to Synchronous mode only

spbrg
This is the value that is written to the baud rate generator register which
determines the baud rate at which the USART operates. The formulas
for baud rate are:

Asynchronous mode, high speed:
 FOSC / (16 * (spbrg + 1))
Asynchronous mode, low speed:
 FOSC / (64 * (spbrg + 1))
Synchronous mode:
 FOSC / (4 * (spbrg + 1))

Where FOSC is the oscillator frequency.

Remarks: This function configures the USART module according to the specified
configuration options.
OpenUSART should be used on parts with a single USART peripheral.
Open1USART and Open2USART should be used on parts with multiple
USART peripherals.

File Name: uopen.c
u1open.c
u2open.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 70 © 2005 Microchip Technology Inc.

Code Example: OpenUSART1(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,
 25);

putcUSART
putc1USART
putc2USART
putcxUSART is defined as WritexUSART. See WriteUSART

putsUSART
puts1USART
puts2USART
putrsUSART
putrs1USART
putrs2USART
Function: Writes a string of characters to the USART including the null character.

Include: usart.h

Prototype: void putsUSART(char *data);
void puts1USART(char *data);
void puts2USART(char *data);
void putrsUSART(const rom char *data);
void putrs1USART(const rom char *data);
void putrs2USART(const rom char *data);

Arguments: data
Pointer to a null-terminated string of data.

Remarks: This function only works in 8-bit transmit/receive mode. This function
writes a string of data to the USART including the null character.
Strings located in data memory should be used with the “puts” versions
of these functions.
Strings located in program memory, including string literals, should be
used with the “putrs” versions of these functions.
putsUSART and putrsUSART should be used on parts with a single
USART peripheral. The other functions should be used on parts with
multiple USART peripherals.

File Name: uputs.c
u1puts.c
u2puts.c
uputrs.c
u1putrs.c
u2putrs.c

Code Example: putrsUSART(“Hello World!”);

OpenUSART
Open1USART
Open2USART (Continued)

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 71

ReadUSART
Read1USART
Read2USART
getcUSART
getc1USART
getc2USART
Function: Read a byte (one character) out of the USART receive buffer, including

the 9th bit if enabled.

Include: usart.h

Prototype: char ReadUSART(void);
char Read1USART(void);
char Read2USART(void);
char getcUSART(void);
char getc1USART(void);
char getc2USART(void);

Remarks: This function reads a byte out of the USART receive buffer. The Status
bits and the 9th data bits are saved in a union with the following
declaration:

 union USART
 {
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
 };

The 9th bit is read-only if 9-bit mode is enabled. The Status bits are
always read.
On a part with a single USART peripheral, the getcUSART and
ReadUSART functions should be used and the status information is
read into a variable named USART_Status which is of the type USART
described above.
On a part with multiple USART peripherals, the getcxUSART and
ReadxUSART functions should be used and the status information is
read into a variable named USARTx_Status which is of the type
USART described above.

Return Value: This function returns the next character in the USART receive buffer.

File Name: uread.c
u1read.c
u2read.c
#define in usart.h
#define in usart.h
#define in usart.h

Code Example: int result;
result = ReadUSART();
result |= (unsigned int)
 USART_Status.RX_NINE << 8;

MPLAB® C18 C Compiler Libraries

DS51297F-page 72 © 2005 Microchip Technology Inc.

WriteUSART
Write1USART
Write2USART
putcUSART
putc1USART
putc2USART
Function: Write a byte (one character) to the USART transmit buffer, including the

9th bit if enabled.

Include: usart.h

Prototype: void WriteUSART(char data);
void Write1USART(char data);
void Write2USART(char data);
void putcUSART(char data);
void putc1USART(char data);
void putc2USART(char data);

Arguments: data
The value to be written to the USART.

Remarks: This function writes a byte to the USART transmit buffer. If 9-bit mode is
enabled, the 9th bit is written from the field TX_NINE, found in a
variable of type USART:

 union USART
 {
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
 };

On a part with a single USART peripheral, the putcUSART and
WriteUSART functions should be used and the Status register is
named USART_Status which is of the type USART described above.
On a part with multiple USART peripherals, the putcxUSART and
WritexUSART functions should be used and the status register is
named USARTx_Status which is of the type USART described above.

File Name: uwrite.c
u1write.c
u2write.c
#define in usart.h
#define in usart.h
#define in usart.h

Code Example: unsigned int outval;
USART1_Status.TX_NINE = (outval & 0x0100)
 >> 8;
Write1USART((char) outval);

Hardware Peripheral Functions

© 2005 Microchip Technology Inc. DS51297F-page 73

baudUSART
baud1USART
baud2USART
Function: Set the baud rate configuration bits for enhanced USART operation.

Include: usart.h

Prototype: void baudUSART(unsigned char baudconfig);
void baud1USART(unsigned char baudconfig);
void baud2USART(unsigned char baudconfig);

Arguments: baudconfig
A bitmask that is created by performing a bitwise AND (‘&’) operation
with a value from each of the categories listed below. These values are
defined in the file usart.h:
Clock Idle State:
BAUD_IDLE_CLK_HIGH Clock idle state is a high level
BAUD_IDLE_CLK_LOW Clock idle state is a low level

Baud Rate Generation:
BAUD_16_BIT_RATE 16-bit baud generation rate
BAUD_8_BIT_RATE 8-bit baud generation rate

RX Pin Monitoring:
BAUD_WAKEUP_ON RX pin monitored
BAUD_WAKEUP_OFF RX pin not monitored

Baud Rate Measurement:
BAUD_AUTO_ON Auto baud rate measurement enabled
BAUD_AUTO_OFF Auto baud rate measurement disabled

Remarks: These functions are only available for processors with enhanced
USART capability.

File Name: ubaud.c
u1baud.c
u2baud.c

Code Example: baudUSART (BAUD_IDLE_CLK_HIGH &
 BAUD_16_BIT_RATE &
 BAUD_WAKEUP_ON &
 BAUD_AUTO_ON);

MPLAB® C18 C Compiler Libraries

DS51297F-page 74 © 2005 Microchip Technology Inc.

2.10.2 Example of Use

#include <p18C452.h>
#include <usart.h>

void main(void)
{
 // configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,
 25);

 while(1)
 {
 while(! PORTAbits.RA0); //wait for RA0 high

 WriteUSART(PORTD); //write value of PORTD

 if(PORTD == 0x80) // check for termination
 break; // value
 }

 CloseUSART();
}

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 75

Chapter 3. Software Peripheral Library

3.1 INTRODUCTION

This chapter documents software peripheral library functions. The source code for all
of these functions is included with MPLAB C18 in the src\traditional\pmc and
src\extended\pmc subdirectories of the compiler installation.

See the MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian
User’s Guide (DS33014) for more information about building libraries.

The following peripherals are supported by MPLAB C18 library routines

• External LCD Functions (Section 3.2 “External LCD Functions”)
• External CAN2510 Functions (Section 3.3 “External CAN2510 Functions”)
• Software I2C™ Functions (Section 3.4 “Software I2C Functions”)
• Software SPI™ Functions (Section 3.5 “Software SPI™ Functions”)
• Software UART Functions (Section 3.6 “Software UART Functions”)

3.2 EXTERNAL LCD FUNCTIONS

These functions are designed to allow the control of a Hitachi HD44780 LCD controller
using I/O pins from a PIC18 microcontroller. The following functions are provided:

TABLE 3-1: EXTERNAL LCD FUNCTIONS

The precompiled versions of these functions use default pin assignments that can be
changed by redefining the following macro assignments in the file xlcd.h, found in the
h subdirectory of the compiler installation:

Function Description

BusyXLCD Is the LCD controller busy?

OpenXLCD Configure the I/O lines used for controlling the LCD and
initialize the LCD.

putcXLCD Write a byte to the LCD controller.

putsXLCD Write a string from data memory to the LCD.

putrsXLCD Write a string from program memory to the LCD.

ReadAddrXLCD Read the address byte from the LCD controller.

ReadDataXLCD Read a byte from the LCD controller.

SetCGRamAddr Set the character generator address.

SetDDRamAddr Set the display data address.

WriteCmdXLCD Write a command to the LCD controller.

WriteDataXLCD Write a byte to the LCD controller.

MPLAB® C18 C Compiler Libraries

DS51297F-page 76 © 2005 Microchip Technology Inc.

TABLE 3-2: MACROS FOR SELECTING LCD PIN ASSIGNMENTS

The libraries that are provided can operate in either a 4-bit mode or 8-bit mode. When
operating in 8-bit mode, all the lines of a single port are used. When operating in 4-bit
mode, either the upper 4 bits or lower 4 bits of a single port are used. The table below
lists the macros used for selecting between 4- or 8-bit mode and for selecting which bits
of a port are used when operating in 4-bit mode.

TABLE 3-3: MACROS FOR SELECTING 4- OR 8-BIT MODE

After these definitions have been made, the user must recompile the XLCD routines
and then include the updated files in the project. This can be accomplished by adding
the XLCD source files into the project or by recompiling the library files using the
provided batch files.

LCD
Controller

Line
Macros Default Value Use

E Pin E_PIN

TRIS_E

PORTBbits.RB4

DDRBbits.RB4

Pin used for the E line.

Bit that controls the direction of the
pin associated with the E line.

RS Pin RS_PIN

TRIS_RS

PORTBbits.RB5

DDRBbits.RB5

Pin used for the RS line.

Bit that controls the direction of the
pin associated with the RS line.

RW Pin RW_PIN

TRIS_RW

PORTBbits.RB6

DDRBbits.RB6

Pin used for the RW line.

Bit that controls the direction of the
pin associated with the RW line.

Data Lines DATA_PORT

TRIS_DATA_PORT

PORTB

DDRB

Pins used for DATA lines. These
routines assume all pins are on a
single port.

Data Direction register associated
with the DATA lines.

Macro Default Value Use

BIT8 not defined If this value is defined when the library functions are
built, they will operate in 8-bit Transfer mode.
Otherwise, they will operate in 4-bit Transfer mode.

UPPER not defined When BIT8 is not defined, this value determines which
nibble of the DATA_PORT is used for data transfer.

If UPPER is defined, the upper 4 bits (4:7) of DATA_PORT
are used.
If UPPER is not defined, the lower 4 bits (0:3) of
DATA_PORT are used.

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 77

The XLCD libraries also require that the following functions be defined by the user to
provide the appropriate delays:

TABLE 3-4: XLCD DELAY FUNCTIONS

3.2.1 Function Descriptions

Function Behavior

DelayFor18TCY Delay for 18 cycles.

DelayPORXLCD Delay for 15 ms.

DelayXLCD Delay for 5 ms.

BusyXLCD
Function: Is the LCD controller busy?

Include: xlcd.h

Prototype: unsigned char BusyXLCD(void);

Remarks: This function returns the status of the busy flag of the Hitachi HD44780
LCD controller.

Return Value: 1 if the controller is busy
0 otherwise.

File Name: busyxlcd.c

Code Example: while(BusyXLCD());

OpenXLCD
Function: Configure the PIC® I/O pins and initialize the LCD controller.

Include: xlcd.h

Prototype: void OpenXLCD(unsigned char lcdtype);

Arguments: lcdtype
A bitmask that is created by performing a bitwise AND operation (‘&’)
with a value from each of the categories listed below. These values are
defined in the file xlcd.h.
Data Interface:

FOUR_BIT 4-bit Data Interface mode
EIGHT_BIT 8-bit Data Interface mode

LCD Configuration:
LINE_5X7 5x7 characters, single line display
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple line display

Remarks: This function configures the PIC18 I/O pins used to control the Hitachi
HD44780 LCD controller. It also initializes this controller.

File Name: openxlcd.c

Code Example: OpenXLCD(EIGHT_BIT & LINES_5X7);

putcXLCD
See WriteDataXLCD.

MPLAB® C18 C Compiler Libraries

DS51297F-page 78 © 2005 Microchip Technology Inc.

putsXLCD
putrsXLCD
Function: Write a string to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void putsXLCD(char *buffer);
void putrsXLCD(const rom char *buffer);

Arguments: buffer
Pointer to characters to be written to the LCD controller.

Remarks: This function writes a string of characters located in buffer to the
Hitachi HD44780 LCD controller. It stops transmission when a null
character is encountered. The null character is not transmitted.
Strings located in data memory should be used with the “puts” versions
of these functions.
Strings located in program memory, including string literals, should be
used with the “putrs” versions of these functions.

File Name: putsxlcd.c
putrxlcd.c

Code Example: char mybuff [20];
putrsXLCD(“Hello World”);
putsXLCD(mybuff);

ReadAddrXLCD
Function: Read the address byte from the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: unsigned char ReadAddrXLCD(void);

Remarks: This function reads the address byte from the Hitachi HD44780 LCD
controller. The LCD controller should not be busy when this operation is
performed – this can be verified using the BusyXLCD function.
The address read from the controller is for the character generator
RAM or the display data RAM depending on the previous
Set??RamAddr function that was called.

Return Value: This function returns an 8-bit quantity. The address is contained in the
lower order 7 bits and the BUSY status flag in the Most Significant bit.

File Name: readaddr.c

Code Example: char addr;
while (BusyXLCD());
addr = ReadAddrXLCD();

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 79

ReadDataXLCD
Function: Read a data byte from the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: char ReadDataXLCD(void);

Remarks: This function reads a data byte from the Hitachi HD44780 LCD control-
ler. The LCD controller should not be busy when this operation is
performed – this can be verified using the BusyXLCD function.
The data read from the controller is for the character generator RAM or
the display data RAM depending on the previous Set??RamAddr
function that was called.

Return Value: This function returns the 8-bit data value.

File Name: readdata.c

Code Example: char data;
while (BusyXLCD());
data = ReadAddrXLCD();

SetCGRamAddr
Function: Set the character generator address.

Include: xlcd.h

Prototype: void SetCGRamAddr(unsigned char addr);

Arguments: addr
Character generator address.

Remarks: This function sets the character generator address of the Hitachi
HD44780 LCD controller. The LCD controller should not be busy when
this operation is performed – this can be verified using the BusyXLCD
function.

File Name: setcgram.c

Code Example: char cgaddr = 0x1F;
while(BusyXLCD());
SetCGRamAddr(cgaddr);

SetDDRamAddr
Function: Set the display data address.

Include: xlcd.h

Prototype: void SetDDRamAddr(unsigned char addr);

Arguments: addr
Display data address.

Remarks: This function sets the display data address of the Hitachi HD44780
LCD controller. The LCD controller should not be busy when this
operation is performed – this can be verified using the BusyXLCD
function.

File Name: setddram.c

Code Example: char ddaddr = 0x10;
while(BusyXLCD());
SetDDRamAddr(ddaddr);

MPLAB® C18 C Compiler Libraries

DS51297F-page 80 © 2005 Microchip Technology Inc.

WriteCmdXLCD
Function: Write a command to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteCmdXLCD(unsigned char cmd);

Arguments: cmd
Specifies the command to be performed. The command may be one of
the following values defined in xlcd.h:

DOFF Turn display off
CURSOR_OFF Enable display with no cursor
BLINK_ON Enable display with blinking cursor
BLINK_OFF Enable display with unblinking cursor

SHIFT_CUR_LEFT Cursor shifts to the left
SHIFT_CUR_RIGHT Cursor shifts to the right
SHIFT_DISP_LEFT Display shifts to the left
SHIFT_DISP_RIGHT Display shifts to the right

Alternatively, the command may be a bitmask that is created by
performing a bitwise AND operation (‘&’) with a value from each of the
categories listed below. These values are defined in the file xlcd.h.

Data Transfer Mode:
FOUR_BIT 4-bit Data Interface mode
EIGHT_BIT 8-bit Data Interface mode

Display Type:
LINE_5X7 5x7 characters, single line
LINE_5X10 5x10 characters display
LINES_5X7 5x7 characters, multiple lines

Remarks: This function writes the command byte to the Hitachi HD44780 LCD
controller. The LCD controller should not be busy when this operation is
performed – this can be verified using the BusyXLCD function.

File Name: wcmdxlcd.c

Code Example: while(BusyXLCD());
WriteCmdXLCD(EIGHT_BIT & LINES_5X7);
WriteCmdXLCD(BLINK_ON);
WriteCmdXLCD(SHIFT_DISP_LEFT);

putcXLCD
WriteDataXLCD
Function: Writes a byte to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteDataXLCD(char data);

Arguments: data
The value of data can be any 8-bit value, but should correspond to the
character RAM table of the HD44780 LCD controller.

Remarks: This function writes a data byte to the Hitachi HD44780 LCD controller.
The LCD controller should not be busy when this operation is
performed – this can be verified using the BusyXLCD function.
The data read from the controller is for the character generator RAM or
the display data RAM depending on the previous Set??RamAddr
function that was called.

File Name: writdata.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 81

3.2.2 Example of Use

#include <p18C452.h>
#include <xlcd.h>
#include <delays.h>
#include <usart.h>

void DelayFor18TCY(void)
{
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
}

void DelayPORXLCD (void)
{
 Delay1KTCYx(60); // Delay of 15ms
 // Cycles = (TimeDelay * Fosc) / 4
 // Cycles = (15ms * 16MHz) / 4
 // Cycles = 60,000
 return;
}

void DelayXLCD (void)
{
 Delay1KTCYx(20); // Delay of 5ms
 // Cycles = (TimeDelay * Fosc) / 4
 // Cycles = (5ms * 16MHz) / 4
 // Cycles = 20,000
 return;
}
void main(void)
{
 char data;

 // configure external LCD
 OpenXLCD(EIGHT_BIT & LINES_5X7);

 // configure USART
 OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF &
 USART_ASYNCH_MODE & USART_EIGHT_BIT &
 USART_CONT_RX,
 25);

 while(1)
 {
 while(!DataRdyUSART()); //wait for data
 data = ReadUSART(); //read data
 WriteDataXLCD(data); //write to LCD
 if(data=='Q')
 break;
 }

 CloseUSART();
}

MPLAB® C18 C Compiler Libraries

DS51297F-page 82 © 2005 Microchip Technology Inc.

3.3 EXTERNAL CAN2510 FUNCTIONS

This section documents the MCP2510 external peripheral library functions. The
following functions are provided:

TABLE 3-5: EXTERNAL CAN2510 FUNCTIONS

Function Description

CAN2510BitModify Modifies the specified bits in a register to the new values.

CAN2510ByteRead Reads the MCP2510 register specified by the address.

CAN2510ByteWrite Writes a value to the MCP2510 register specified by the
address.

CAN2510DataRead Reads a message from the specified receive buffer.

CAN2510DataReady Determines if data is waiting in the specified receive
buffer.

CAN2510Disable Drives the selected PIC18CXXX I/O pin high to disable the
Chip Select of the MCP2510.(1)

CAN2510Enable Drives the selected PIC18CXXX I/O pin low to Chip Select
the MCP2510.(1)

CAN2510ErrorState Reads the current Error State of the CAN bus.

CAN2510Init Initialize the PIC18CXXX SPI port for communications to
the MCP2510 and then configures the MCP2510 registers
to interface with the CAN bus.

CAN2510InterruptEnable Modifies the CAN2510 interrupt enable bits (CANINTE
register) to the new values.

CAN2510InterruptStatus Indicates the source of the CAN2510 interrupt.

CAN2510LoadBufferStd Loads a Standard data frame into the specified transfer
buffer.

CAN2510LoadBufferXtd Loads an Extended data frame into the specified transfer
buffer.

CAN2510LoadRTRStd Loads a Standard remote frame into the specified transfer
buffer.

CAN2510LoadRTRXtd Loads an Extended remote frame into the specified
transfer buffer.

CAN2510ReadMode Reads the MCP2510 current mode of operation.

CAN2510ReadStatus Reads the status of the MCP2510 Transmit and Receive
Buffers.

CAN2510Reset Resets the MCP2510.

CAN2510SendBuffer Requests message transmission for the specified transmit
buffer(s).

CAN2510SequentialRead Reads the number of specified bytes in the MCP2510,
starting at the specified address. These values will be
stored in DataArray.

CAN2510SequentialWrite Writes the number of specified bytes in the MCP2510,
starting at the specified address. These values will be
written from DataArray.

CAN2510SetBufferPriority Loads the specified priority for the specified transmit
buffer.

CAN2510SetMode Configures the MCP2510 mode of operation.

CAN2510SetMsgFilterStd Configures ALL of the filter and mask values of the
specific receive buffer for a standard message.

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 83

3.3.1 Function Descriptions

CAN2510SetMsgFilterXtd Configures ALL of the filter and mask values of the
specific receive buffer for a extended message.

CAN2510SetSingleFilterStd Configures the specified Receive filter with a filter value for
a Standard (Std) message.

CAN2510SetSingleFilterXtd Configures the specified Receive filter with a filter value for
a Extended (Xtd) message.

CAN2510SetSingleMaskStd Configures the specified Receive buffer mask with a mask
value for a Standard (Std) format message.

CAN2510SetSingleMaskXtd Configures the specified Receive buffer mask with a mask
value for an Extended (Xtd) message.

CAN2510WriteBuffer Initiates CAN message transmission of selected buffer.

CAN2510WriteStd Writes a Standard format message out to the CAN bus
using the first available transmit buffer.

CAN2510WriteXtd Writes an Extended format message out to the CAN bus
using the first available transmit buffer.

Note 1: The functions CAN2510Enable and CAN2510Disable will need to be recompiled if:
- the PICmicro® MCU assignment of the CS pin is modified from RC2
- the device header file needs to be changed

CAN2510BitModify
Function: Modifies the specified bits in a register to the new values.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510BitModify(
unsigned char addr
unsigned char mask
unsigned char data);

Arguments: addr
The value of addr specifies the address of the MCP2510 register to
modify.

mask
The value of mask specifies the bits that will be modified.

data
The value of data specifies the new state of the bits.

Remarks: This function modifies the contents of the register specified by address,
the mask specifies which bits are to be modified and the data specifies
the new value to load into those bits. Only specific registers can be
modified with the Bit Modify command.

File Name: canbmod.c

TABLE 3-5: EXTERNAL CAN2510 FUNCTIONS (CONTINUED)

Function Description

MPLAB® C18 C Compiler Libraries

DS51297F-page 84 © 2005 Microchip Technology Inc.

CAN2510ByteRead
Function: Reads the MCP2510 register specified by the address.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510ByteRead(
unsigned char address);

Arguments: address
The address of the MCP2510 that is to be read.

Remarks: This function reads a single byte from the MCP2510 at the specified
address.

Return Value: The contents of the specified address.

File Name: readbyte.c

CAN2510ByteWrite
Function: Writes a value to the MCP2510 register specified by the address.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510ByteWrite(
unsigned char address,
unsigned char value);

Arguments: address
The address of the MCP2510 that is to be written.

value
The value that is to be written.

Remarks: This function writes a single byte from the MCP2510 at the specified
address.

File Name: wrtbyte.c

CAN2510DataRead
Function: Reads a message from the specified receive buffer.

Required CAN
Mode(s): All (except Configuration mode)

Include: can2510.h

Prototype: unsigned char CAN2510DataRead(
unsigned char bufferNum,
unsigned long *msgId,
unsigned char *numBytes,
unsigned char *data);

Arguments: bufferNum
Receive buffer from which to read the message. One of the following
values:

CAN2510_RXB0 Read receive buffer 0
CAN2510_RXB1 Read receive buffer 1

msgId
Points to a location that will be modified by the function to contain the
CAN standard message identifier.

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 85

numBytes
Points to a location that will be modified by the function to contain the
number of bytes in this message.

data
Points to an array that will be modified by the function to contain the
message data. This array should be at least 8 bytes long, since that is
the maximum message data length.

Remarks: This function determines if the message is a standard or extended
message, decodes the ID and message length, and fills in the
user-supplied locations with the appropriate information. The
CAN2510DataReady function should be used to determine if a
specified buffer has data to read.

Return Value: Function returns one of the following values:
CAN2510_XTDMSG Extended format message
CAN2510_STDMSG Standard format message
CAN2510_XTDRTR Remote transmit request

(XTD message)
CAN2510_STDRTR Remote transmit request

(STD message)

File Name: canread.c

CAN2510DataReady
Function: Determines if data is waiting in the specified receive buffer.

Required CAN
Mode(s): All (except Configuration mode)

Include: can2510.h

Prototype: unsigned char CAN2510DataReady(
unsigned char bufferNum);

Arguments: bufferNum
Receive buffer to check for waiting message. One of the following
values:
CAN2510_RXB0 Check Receive Buffer 0
CAN2510_RXB1 Check Receive Buffer 1
CAN2510_RXBX Check Receive Buffer 0 and Receive Buffer 1

Remarks: This function tests the appropriate RXnIF bit in the CANINTF register.

Return Value: Returns zero if no message detected or a non-zero value if a message
was detected.
1 = buffer0
2 = buffer1
3 = both

File Name: canready.c

CAN2510DataRead (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 86 © 2005 Microchip Technology Inc.

CAN2510Disable
Function: Drives the selected PIC18CXXX I/O pin high to disable the Chip Select

of the MCP2510.

Required CAN
Mode(s): All

Include: canenabl.h

Note: This include file will need to be modified if the Chip Select signal
is not associated with the RC2 pin of the PICmicro MCU.

Prototype: void CAN2510Disable(void);

Arguments: None

Remarks: This function requires that the user modifies the file to specify the
PIC18CXXX I/O pin (and Port) that will be used to connect to the
MCP2510 CS pin. The default pin is RC2.

Note: The source file that contains this function (and the
CAN2510Enable function) must have the definitions modified to
correctly specify the Port (A, B, C, ...) and Pin number (1, 2, 3, ...)
that is used to control the MCP2510 CS pin. After the modifica-
tion, the processor-specific library must be rebuilt. See Section
1.5.3 “Rebuilding” for information on rebuilding.

File Name: canenabl.c

CAN2510Enable
Function: Drives the selected PIC18CXXX I/O pin low to Chip Select the

MCP2510.

Required CAN
Mode(s): All

Include: canenabl.h

Note: This include file will need to be modified if the Chip Select signal
is not associated with the RC2 pin of the PICmicro MCU.

Prototype: void CAN2510Enable(void);

Remarks: This function requires that the user modifies the file to specify the
PIC18CXXX I/O pin (and Port) that will be used to connect to the
MCP2510 CS pin. The default pin is RC2.

Note: The source file that contains this function (and the
CAN2510Disable function) must have the definitions modified
to correctly specify the Port (A, B, C, ...) and Pin number
(1, 2, 3, ...) that is used to control the MCP2510 CS pin. After the
modification, the processor-specific library must be rebuilt. See
 Section 1.5.3 “Rebuilding” for information on rebuilding.

File Name: canenabl.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 87

CAN2510ErrorState
Function: Reads the current Error State of the CAN bus.

Required CAN
Mode(s):

Normal mode, Loopback mode, Listen Only mode
(Error counters are reset in Configuration mode)

Include: can2510.h

Prototype: unsigned char CAN2510ErrorState(void);

Remarks: This function returns the Error State of the CAN bus. The Error State is
dependent on the values in the TEC and REC registers.

Return Value: Function returns one of the following values:
CAN2510_BUS_OFF TEC > 255
CAN2510_ERROR_PASSIVE_TX TEC > 127
CAN2510_ERROR_PASSIVE_RX REC > 127
CAN2510_ERROR_ACTIVE_WITH_TXWARN TEC > 95
CAN2510_ERROR_ACTIVE_WITH_RXWARN REC > 95
CAN2510_ERROR_ACTIVE TEC ≤ 95 and REC ≤ 95

File Name: canerrst.c

CAN2510Init
Function: Initialize the PIC18CXXX SPI port for communications to the MCP2510

and then configures the MCP2510 registers to interface with the CAN
bus.

Required CAN
Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510Init(
unsigned short long BufferConfig,
unsigned short long BitTimeConfig,
unsigned char interruptEnables,
unsigned char SPI_syncMode,
unsigned char SPI_busMode,
unsigned char SPI_smpPhase);

Arguments: The values of the following parameters are defined in the include file
can2510.h.
BufferConfig
The value of BufferConfig is constructed through the bitwise AND (‘&’)
operation of the following options. Only one option per group function
may be selected. The option in the bold font is the default value.

Reset MCP2510 Device
Specifies if the MCP2510 Reset command is to be sent. This does not
correspond to a bit in the MCP2510 registers.
CAN2510_NORESET Don’t reset the MCP2510
CAN2510_RESET Reset the MCP2510

Buffer 0 Filtering
Controlled by the RXB0M1:RXB0M0 bits (RXB0CTRL register)
CAN2510_RXB0_USEFILT Receive all messages, Use filters
CAN2510_RXB0_STDMSG Receive only Standard messages
CAN2510_RXB0_XTDMSG Receive only Extended messages
CAN2510_RXB0_NOFILT Receive all messages, NO filters

Buffer 1 Filtering
Controlled by the RXB1M1:RXB1M0 bits (RXB1CTRL register)
CAN2510_RXB1_USEFILT Receive all messages, Use filters
CAN2510_RXB1_STDMSG Receive only Standard messages
CAN2510_RXB1_XTDMSG Receive only Extended messages
CAN2510_RXB1_NOFILT Receive all messages, NO filters

MPLAB® C18 C Compiler Libraries

DS51297F-page 88 © 2005 Microchip Technology Inc.

Receive Buffer 0 to Receive Buffer 1 Rollover
Controlled by the BUKT bit (RXB0CTRL register)
CAN2510_RXB0_ROLL If receive buffer 0 is full, message

goes to receive buffer 1
CAN2510_RXB0_NOROLL Rollover Disabled

RX1BF Pin Setting
Controlled by the B1BFS:B1BFE:B1BFM bits (BFPCTRL register)
CAN2510_RX1BF_OFF RX1BF pin is high-impedance
CAN2510_RX1BF_INT RX1BF pin is an output which

indicates Receive Buffer 1 was
loaded. Can be used as an interrupt
signal.

CAN2510_RX1BF_GPOUTH RX1BF pin is a general purpose digital
output, Output High

CAN2510_RX1BF_GPOUTL RX1BF pin is a general purpose digital
output, Output Low

RX0BF Pin Setting
Controlled by the B0BFS:B0BFE:B0BFM bits (BFPCTRL register)
CAN2510_RX0BF_OFF RX0BF pin is high-impedance
CAN2510_RX0BF_INT RX0BF pin is an output which indicates

Receive Buffer 0 was loaded. Can be
used as an interrupt signal.

CAN2510_RX0BF_GPOUTH RX0BF pin is a general purpose digital
output, Output High

CAN2510_RX0BF_GPOUTL RX0BF pin is a general purpose digital
output, Output Low

TX2 Pin Setting
Controlled by the B2RTSM bit (TXRTSCTRL register)
CAN2510_TX2_GPIN TX2RTS pin is a digital input
CAN2510_TX2_RTS TX2RTS pin is an input used to initiate a

Request To Send frame from TXBUF2

TX1 Pin Setting
Controlled by the B1RTSM bit (TXRTSCTRL register)
CAN2510_TX1_GPIN TX1RTS pin is a digital input
CAN2510_TX1_RTS TX1RTS pin is an input used to initiate a

Request To Send frame from TXBUF1

TX0 Pin Setting
Controlled by the B0RTSM bit (TXRTSCTRL register)
CAN2510_TX0_GPIN TX0RTS pin is a digital input
CAN2510_TX0_RTS TX0RTS pin is an input used to initiate a

Request To Send frame from TXBUF0

Request Mode of Operation
Controlled by the REQOP2:REQOP0 bits (CANCTRL register)
CAN2510_REQ_CONFIG Configuration mode
CAN2510_REQ_NORMAL Normal Operation mode
CAN2510_REQ_SLEEP Sleep mode
CAN2510_REQ_LOOPBACK Loop Back mode
CAN2510_REQ_LISTEN Listen Only mode

CLKOUT Pin Setting
Controlled by the CLKEN:CLKPRE1:CLKPRE0 bits (CANCTRL register)
CAN2510_CLKOUT_8 CLKOUT = FOSC / 8
CAN2510_CLKOUT_4 CLKOUT = FOSC / 4
CAN2510_CLKOUT_2 CLKOUT = FOSC / 2
CAN2510_CLKOUT_1 CLKOUT = FOSC
CAN2510_CLKOUT_OFF CLKOUT is Disabled

CAN2510Init (Continued)

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 89

BitTimeConfig
The value of BitTimeConfig is constructed through the bitwise AND (‘&’)
operation of the following options. Only one option per group function
may be selected. The option in the bold font is the default value.

Baud Rate Prescaler (BRP)
Controlled by the BRP5:BRP0 bits (CNF1 register)
CAN2510_BRG_1X TQ = 1 x (2TOSC)
 : :
CAN2510_BRG_64X TQ = 64 x (2TOSC)

Synchronization Jump Width
Controlled by the SJW1:SJW0 bits (CNF1 register)
CAN2510_SJW_1TQ SJW length = 1 TQ
CAN2510_SJW_2TQ SJW length = 2 TQ
CAN2510_SJW_3TQ SJW length = 3 TQ
CAN2510_SJW_4TQ SJW length = 4 TQ

Phase 2 Segment Width
Controlled by the PH2SEG2:PH2SEG0 bits (CNF3 register)
CAN2510_PH2SEG_2TQ Length = 2 TQ
CAN2510_PH2SEG_3TQ Length = 3 TQ
CAN2510_PH2SEG_4TQ Length = 4 TQ
CAN2510_PH2SEG_5TQ Length = 5 TQ
CAN2510_PH2SEG_6TQ Length = 6 TQ
CAN2510_PH2SEG_7TQ Length = 7 TQ
CAN2510_PH2SEG_8TQ Length = 8 TQ

Phase 1 Segment Width
Controlled by the PH1SEG2:PH1SEG0 bits (CNF2 register)
CAN2510_PH1SEG_1TQ Length = 1 TQ
CAN2510_PH1SEG_2TQ Length = 2 TQ
CAN2510_PH1SEG_3TQ Length = 3 TQ
CAN2510_PH1SEG_4TQ Length = 4 TQ
CAN2510_PH1SEG_5TQ Length = 5 TQ
CAN2510_PH1SEG_6TQ Length = 6 TQ
CAN2510_PH1SEG_7TQ Length = 7 TQ
CAN2510_PH1SEG_8TQ Length = 8 TQ

Propagation Segment Width
Controlled by the PRSEG2:PRSEG0 bits (CNF2 register)
CAN2510_PROPSEG_1TQ Length = 1 TQ
CAN2510_PROPSEG_2TQ Length = 2 TQ
CAN2510_PROPSEG_3TQ Length = 3 TQ
CAN2510_PROPSEG_4TQ Length = 4 TQ
CAN2510_PROPSEG_5TQ Length = 5 TQ
CAN2510_PROPSEG_6TQ Length = 6 TQ
CAN2510_PROPSEG_7TQ Length = 7 TQ
CAN2510_PROPSEG_8TQ Length = 8 TQ

Phase 2 Source
Controlled by the BTLMODE bit (CNF2 register). This determines if the
Phase 2 length is determined by the PH2SEG2:PH2SEG0 bits or the
greater length of PH1SEG2:PH1SEG0 bits and (2TQ).
CAN2510_PH2SOURCE_PH2 Length = PH2SEG2:PH2SEG0
CAN2510_PH2SOURCE_PH1 Length = greater of

PH1SEG2:PH1SEG0 and 2TQ

Bit Sample Point Frequency
Controlled by the SAM bit (CNF2 register). This determines if the bit is
sampled 1 or 3 times at the sample point.
CAN2510_SAMPLE_1x Bit is sampled once
CAN2510_SAMPLE_3x Bit is sampled three times

CAN2510Init (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 90 © 2005 Microchip Technology Inc.

RX pin Noise Filter in Sleep Mode
Controlled by the WAKFIL bit (CNF3 register). This determines if the RX
pin will use a filter to reject noise when the device is in Sleep mode.
CAN2510_RX_FILTER Filtering on RX pin when in Sleep

mode
CAN2510_RX_NOFILTER No filtering on RX pin when in Sleep

mode

interruptEnables
The value of interruptEnables can be a combination of the
following values, combined using a bitwise AND (‘&’) operation. The
option in the bold font is the default value. Controlled by all bits in the
CANINTE register.

CAN2510_NONE_EN No interrupts enabled
CAN2510_MSGERR_EN Interrupt on error during message

reception or transmission
CAN2510_WAKEUP_EN Interrupt on CAN bus activity
CAN2510_ERROR_EN Interrupt on EFLG error condition

change
CAN2510_TXB2_EN Interrupt on transmission buffer 2

becoming empty
CAN2510_TXB1_EN Interrupt on transmission buffer 1

becoming empty
CAN2510_TXB0_EN Interrupt on transmission buffer 0

becoming empty
CAN2510_RXB1_EN Interrupt when message received in

receive buffer 1
CAN2510_RXB0_EN Interrupt when message received in

receive buffer 0

SPI_syncMode
Specifies the PIC18CXXX SPI synchronization frequency:
CAN2510_SPI_FOSC4 Communicates at FOSC/4
CAN2510_SPI_FOSC16 Communicates at FOSC/16
CAN2510_SPI_FOSC64 Communicates at FOSC/64
CAN2510_SPI_FOSCTMR2 Communicates at TMR2/2

SPI_busMode
Specifies the PIC18CXXX SPI bus mode:
CAN2510_SPI_MODE00 Communicate using SPI mode 00
CAN2510_SPI_MODE01 Communicate using SPI mode 01

SPI_smpPhase
Specifies the PIC18CXXX SPI sample point:
CAN2510_SPI_SMPMID Samples in middle of SPI bit
CAN2510_SPI_SMPEND Samples at end of SPI bit

Remarks: This function initializes the PIC18CXXX SPI module, resets the
MCP2510 device (if requested) and then configures the MCP2510
registers.

Note: When this function is completed, the MCP2510 is left in the
Configuration mode.

Return Value: Indicates if the MCP2510 could be initialized.
0 if initialization completed
-1 if initialization did not complete

File Name: caninit.c

CAN2510Init (Continued)

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 91

CAN2510InterruptEnable
Function: Modifies the CAN2510 interrupt enable bits (CANINTE register) to the

new values.

Required CAN
Mode(s): All

Include: can2510.h,
spi_can.h

Prototype: void CAN2510InterruptEnable(
unsigned char interruptEnables);

Arguments: interruptEnables
The value of interruptEnables can be a combination of the
following values, combined using a bitwise AND (‘&’) operation. The
option in the bold font is the default value. Controlled by all bits in the
CANINTE register.

CAN2510_NONE_EN No interrupts enabled (00000000)
CAN2510_MSGERR_EN Interrupt on error during message

reception or transmission
(10000000)

CAN2510_WAKEUP_EN Interrupt on CAN bus activity
(01000000)

CAN2510_ERROR_EN Interrupt on EFLG error condition change
(00100000)

CAN2510_TXB2_EN Interrupt on transmission buffer 2
becoming empty (00010000)

CAN2510_TXB1_EN Interrupt on transmission buffer 1
becoming empty (00001000)

CAN2510_TXB0_EN Interrupt on transmission buffer 0
becoming empty (00000100)

CAN2510_RXB1_EN Interrupt when message received in
receive buffer 1 (00000010)

CAN2510_RXB0_EN Interrupt when message received in
receive buffer 0 (00000001)

Remarks: This function updates the CANINTE register with the value that is
determined by ANDing the desired interrupt sources.

File Name: caninte.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 92 © 2005 Microchip Technology Inc.

CAN2510InterruptStatus
Function: Indicates the source of the CAN2510 interrupt.

Required CAN
Mode(s): All

Include: can2510.h,
spi_can.h

Prototype: unsigned char CAN2510InterruptStatus(
void);

Remarks: This function reads the CANSTAT register and specifies a code
depending on the state of the ICODE2:ICODE0 bits.

Return Value: Function returns one of the following values:
CAN2510_NO_INTS No interrupts occurred
CAN2510_WAKEUP_INT Interrupt on CAN bus activity
CAN2510_ERROR_INT Interrupt on EFLG error condition change
CAN2510_TXB2_INT Interrupt on transmission buffer 2

becoming empty
CAN2510_TXB1_INT Interrupt on transmission buffer 1

becoming empty
CAN2510_TXB0_INT Interrupt on transmission buffer 0

becoming empty
CAN2510_RXB1_INT Interrupt when message received in

receive buffer 1
CAN2510_RXB0_INT Interrupt when message received in

receive buffer 0

File Name: canints.c

CAN2510LoadBufferStd
Function: Loads a Standard data frame into the specified transfer buffer.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510LoadBufferStd(
unsigned char bufferNum,
unsigned int msgId,
unsigned char numBytes,
unsigned char *data);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 11 bits for a standard message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is greater than
8, only the first 8 bytes of data will be stored.

data
Array of data values to be loaded. The array must be at least as large as
the value specified in numBytes.

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 93

Remarks: This function loads the message information, but does not transmit the
message. Use the CAN2510WriteBuffer() function to write the
message onto the CAN bus.
This function does not set the priority of the buffer. Use the
CAN2510SetBufferPriority() function to set buffer priority.

File Name: canloads.c

CAN2510LoadBufferXtd
Function: Loads an Extended data frame into the specified transfer buffer.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510LoadBufferXtd(
unsigned char bufferNum,
unsigned long msgId,
unsigned char numBytes,
unsigned char *data);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 29 bits for a extended message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is greater than
8, only the first 8 bytes of data will be stored.

data
Array of data values to be loaded. The array must be at least as large as
the value specified in numBytes.

Remarks: This function loads the message information, but does not transmit the
message. Use the CAN2510WriteBuffer() function to write the
message onto the CAN bus.
This function does not set the priority of the buffer. Use the
CAN2510SetBufferPriority() function to set buffer priority.

File Name: canloadx.c

CAN2510LoadBufferStd (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 94 © 2005 Microchip Technology Inc.

CAN2510LoadRTRStd
Function: Loads a Standard remote frame into the specified transfer buffer.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510LoadBufferStd(
unsigned char bufferNum,
unsigned int msgId,
unsigned char numBytes);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 11 bits for a standard message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is greater than
8, only the first 8 bytes of data will be stored.

Remarks: This function loads the message information, but does not transmit the
message. Use the CAN2510WriteBuffer() function to write the
message onto the CAN bus.
This function does not set the priority of the buffer. Use the
CAN2510SetBufferPriority() function to set buffer priority.

File Name: canlrtrs.c

CAN2510LoadRTRXtd
Function: Loads an Extended remote frame into the specified transfer buffer.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510LoadBufferXtd(
unsigned char bufferNum,
unsigned long msgId,
unsigned char numBytes);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 29 bits for a extended message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is greater than
8, only the first 8 bytes of data will be stored.

Remarks: This function loads the message information, but does not transmit the
message. Use the CAN2510WriteBuffer() function to write the
message onto the CAN bus.
This function does not set the priority of the buffer. Use the
CAN2510SetBufferPriority() function to set buffer priority.

File Name: canlrtrx.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 95

CAN2510ReadMode
Function: Reads the MCP2510 current mode of operation.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510ReadMode(void);

Remarks: This function reads the current Operating mode. The mode may have a
pending request for a new mode.

Return Value: mode
The value of mode can be one of the following values (defined in
can2510.h). Specified by the OPMODE2:OPMODE0 bits (CANSTAT
register). One of the following values:
CAN2510_MODE_CONFIG Configuration registers can be

modified
CAN2510_MODE_NORMAL Normal (send and receive messages)
CAN2510_MODE_SLEEP Wait for interrupt
CAN2510_MODE_LISTEN Listen only, don’t send
CAN2510_MODE_LOOPBACK Used for testing, messages stay

internal

File Name: canmoder.c

CAN2510ReadStatus
Function: Reads the status of the MCP2510 Transmit and Receive Buffers.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510ReadStatus(void);

Remarks: This function reads the current status of the transmit and receive buffers.

Return Value: status
The value of status (an unsigned byte) has the following format:
bit 7 TXB2IF
bit 6 TXB2REQ
bit 5 TXB1IF
bit 4 TXB1REQ
bit 3 TXB0IF
bit 2 TXB0REQ
bit 1 RXB1IF
bit 0 RXB0IF

File Name: canstats.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 96 © 2005 Microchip Technology Inc.

CAN2510Reset
Function: Resets the MCP2510.

Required CAN
Mode(s): All

Include: can2510.h
spi_can.h
spi.h

Prototype: void CAN2510Reset(void);

Remarks: This function resets the MCP2510.

File Name: canreset.c

CAN2510SendBuffer
Function: Requests message transmission for the specified transmit buffer(s).

Required CAN
Mode(s): Normal mode

Include: can2510.h

Prototype: void CAN2510WriteBuffer
(unsigned char bufferNum);

Arguments: bufferNum
Specifies the buffer to request transmission of. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2
CAN2510_TXB0_B1 Transmit buffer 0 and buffer 1
CAN2510_TXB0_B2 Transmit buffer 0 and buffer 2
CAN2510_TXB1_B2 Transmit buffer 1 and buffer 2
CAN2510_TXB0_B1_B2 Transmit buffer 0, buffer 1 and buffer 2

Remarks: This function requests transmission of a previously loaded message
stored in the specified buffer(s). To load a message, use the
CAN2510LoadBufferStd() or CAN2510LoadBufferXtd()
routines.

File Name: cansend.c

CAN2510SequentialRead
Function: Reads the number of specified bytes in the MCP2510, starting at the

specified address. These values will be stored in DataArray.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510SequentialRead(
unsigned char *DataArray
unsigned char CAN2510addr
unsigned char numbytes);

Arguments: DataArray
The start address of the data array that stores the sequential read data.

CAN2510addr
The address of the MCP2510 where the sequential reads start from.

numbytes
The number of bytes to sequentially read.

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 97

Remarks: This function reads sequential bytes from the MCP2510 starting at the
specified address. These values are loaded starting at the first address
of the array that is specified.

File Name: readseq.c

CAN2510SequentialWrite
Function: Writes the number of specified bytes in the MCP2510, starting at the

specified address. These values will be written from DataArray.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510SequentialWrite(
unsigned char *DataArray
unsigned char CAN2510addr
unsigned char numbytes);

Arguments: DataArray
The start address of the data array that contains the sequential write
data.

CAN2510addr
The address of the MCP2510 where the sequential writes start from.

numbytes
The number of bytes to sequentially write.

Remarks: This function writes sequential bytes to the MCP2510 starting at the
specified address. These values are contained starting at the first
address of the array that is specified.

File Name: wrtseq.c

CAN2510SetBufferPriority
Function: Loads the specified priority for the specified transmit buffer.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510SetBufferPriority(
unsigned char bufferNum,
unsigned char bufferPriority);

Arguments: bufferNum
Specifies the buffer to configure the priority of. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2

bufferPriority
Priority of buffer. One of the following values:
CAN2510_PRI_HIGHEST Highest message priority
CAN2510_PRI_HIGH High message priority
CAN2510_PRI_LOW Low message priority
CAN2510_PRI_LOWEST Lowest message priority

Remarks: This function loads the specified priority of an individual buffer.

File Name: cansetpr.c

CAN2510SequentialRead (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 98 © 2005 Microchip Technology Inc.

CAN2510SetMode
Function: Configures the MCP2510 mode of operation.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: void CAN2510SetMode(unsigned char mode);

Arguments: mode
The value of mode can be one of the following values (defined in
can2510.h). Controlled by the REQOP2:REQOP0 bits (CANCTRL
register). One of the following values:
CAN2510_MODE_CONFIG Configuration registers can be

modified
CAN2510_MODE_NORMAL Normal (send and receive messages)
CAN2510_MODE_SLEEP Wait for interrupt
CAN2510_MODE_LISTEN Listen only, don’t send
CAN2510_MODE_LOOPBACK Used for testing, messages stay

internal

Remarks: This function configures the specified mode. The mode will not change
until all pending message transmissions are complete.

File Name: canmodes.c

CAN2510SetMsgFilterStd
Function: Configures ALL of the filter and mask values of the specific receive

buffer for a standard message.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510SetMsgFilterStd(
unsigned char bufferNum,
unsigned int mask,
unsigned int *filters);

Arguments: bufferNum
Specifies the receive buffer to configure the mask and filters for. One of
the following values:
CAN2510_RXB0 Configure RXM0, RXF0 and RXF1
CAN2510_RXB1 Configure RXM1, RXF2, RXF3, RXF4 and RXF5

mask
Value to store in the corresponding mask

filters
Array of filter values.

For Buffer 0
Standard-length messages: Array of 2 unsigned integers

For Buffer 1
Standard-length messages: Array of 4 unsigned integers

Remarks: This function configures the MCP2510 into Configuration mode, then
writes the mask and filter values out to the appropriate registers. Before
returning, it configures the MCP2510 to the original mode.

Return Value: Indicates if the MCP2510 modes could be modified properly.
0 if initialization and restoration of Operating mode completed
-1 if initialization and restoration of Operating mode did not complete

File Name: canfms.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 99

CAN2510SetMsgFilterXtd
Function: Configures ALL of the filter and mask values of the specific receive

buffer for a extended message.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510SetMsgFilterXtd(
unsigned char bufferNum,
unsigned long mask,
unsigned long *filters);

Arguments: bufferNum
Specifies the receive buffer to configure the mask and filters for one of
the following values:
CAN2510_RXB0 Configure RXM0, RXF0 and RXF1
CAN2510_RXB1 Configure RXM1, RXF2, RXF3, RXF4 and

RXF5

mask
Value to store in the corresponding mask

filters
Array of filter values.

For Buffer 0
Extended-length messages: Array of 2 unsigned long integers

For Buffer 1
Extended-length messages: Array of 4 unsigned long integers

Remarks: This function configures the MCP2510 into Configuration mode, then
writes the mask and filter values out to the appropriate registers. Before
returning, it configures the MCP2510 to the original mode.

Return Value: Indicates if the MCP2510 modes could be modified properly:
0 if Initialization and restoration of Operating mode completed
-1 if initialization and restoration of Operating mode did not complete

File Name: canfmx.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 100 © 2005 Microchip Technology Inc.

CAN2510SetSingleFilterStd
Function: Configures the specified Receive filter with a filter value for a Standard

(Std) message.

Required CAN
Mode(s): Configuration mode

Include: can2510.h

Prototype: void CAN2510SetSingleFilterStd(
unsigned char filterNum,
unsigned int filter);

Arguments: filterNum
Specifies the acceptance filter to configure. One of the following values:
CAN2510_RXF0 Configure RXF0 (for RXB0)
CAN2510_RXF1 Configure RXF1 (for RXB0)
CAN2510_RXF2 Configure RXF2 (for RXB1)
CAN2510_RXF3 Configure RXF3 (for RXB1)
CAN2510_RXF4 Configure RXF4 (for RXB1)
CAN2510_RXF5 Configure RXF5 (for RXB1)

filter
Value to store in the corresponding filter

Remarks: This function writes the filter value to the appropriate registers. The
MCP2510 must be in Configuration mode before executing this function.

File Name: canfilts.c

CAN2510SetSingleFilterXtd
Function: Configures the specified Receive filter with a filter value for a Extended

(Xtd) message.

Required CAN
Mode(s): Configuration mode

Include: can2510.h

Prototype: void CAN2510SetSingleFilterXtd(
unsigned char filterNum,
unsigned long filter);

Arguments: filterNum
Specifies the acceptance filter to configure. One of the following values:
CAN2510_RXF0 Configure RXF0 (for RXB0)
CAN2510_RXF1 Configure RXF1 (for RXB0)
CAN2510_RXF2 Configure RXF2 (for RXB1)
CAN2510_RXF3 Configure RXF3 (for RXB1)
CAN2510_RXF4 Configure RXF4 (for RXB1)
CAN2510_RXF5 Configure RXF5 (for RXB1)

filter
Value to store in the corresponding filter

Remarks: This function writes the filter value to the appropriate registers. The
MCP2510 must be in Configuration mode before executing this function.

File Name: canfiltx.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 101

CAN2510SetSingleMaskStd
Function: Configures the specified Receive buffer mask with a mask value for a

Standard (Std) format message.

Required CAN
Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510SetSingleMaskStd(
unsigned char maskNum,
unsigned int mask);

Arguments: maskNum
Specifies the acceptance mask to configure. One of the following
values:
CAN2510_RXM0 Configure RXM0 (for RXB0)
CAN2510_RXM1 Configure RXM1 (for RXB1)

mask
Value to store in the corresponding mask

Remarks: This function writes the mask value to the appropriate registers. The
MCP2510 must be in Configuration mode before executing this function.

File Name: canmasks.c

CAN2510SetSingleMaskXtd
Function: Configures the specified Receive buffer mask with a mask value for an

Extended (Xtd) message.

Required CAN
Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510SetSingleMaskXtd(
unsigned char maskNum,
unsigned long mask);

Arguments: maskNum
Specifies the acceptance mask to configure. One of the following
values:
CAN2510_RXM0 Configure RXM0 (for RXB0)
CAN2510_RXM1 Configure RXM1 (for RXB1)
mask
Value to store in the corresponding mask

Remarks: This function writes the mask value to the appropriate registers. The
MCP2510 must be in Configuration mode before executing this function.

File Name: canmaskx.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 102 © 2005 Microchip Technology Inc.

CAN2510WriteBuffer
Function: Initiates CAN message transmission of selected buffer.

Required CAN
Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510WriteBuffer(
unsigned char bufferNum)

Arguments: bufferNum
Specifies the buffer to load the message into. One of the following
values:
CAN2510_TXB0 Transmit buffer 0
CAN2510_TXB1 Transmit buffer 1
CAN2510_TXB2 Transmit buffer 2

Remarks: This function initiates transmission of the selected transmit bufffer.

File Name: canwrbuf.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 103

CAN2510WriteStd
Function: Writes a Standard format message out to the CAN bus using the first

available transmit buffer.

Required CAN
Mode(s): Normal mode

Include: can2510.h

Prototype: unsigned char CAN2510WriteStd(
unsigned int msgId,
unsigned char msgPriority,
unsigned char numBytes,
unsigned char *data);

Arguments: msgId
CAN message identifier, 11 bits for a standard message. This 11-bit
identifier is stored in the lower 11 bits of msgId (an unsigned integer).

msgPriority
Priority of buffer. One of the following values:
CAN2510_PRI_HIGHEST Highest message priority
CAN2510_PRI_HIGH High intermediate message priority
CAN2510_PRI_LOW Low intermediate message priority
CAN2510_PRI_LOWEST Lowest message priority

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is greater than
8, only the first 8 bytes of data will be sent.

data
Array of data values to be written. Must be at least as large as the value
specified in numBytes.

Remarks: This function will query each transmit buffer for a pending message, and
will post the specified message into the first available buffer.

Return Value: Value indicates which buffer was used to transmit the message
(0, 1 or 2).
-1 indicates that no message was sent.

File Name: canwrits.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 104 © 2005 Microchip Technology Inc.

CAN2510WriteXtd
Function: Writes an Extended format message out to the CAN bus using the first

available transmit buffer.

Required CAN
Mode(s): Normal mode

Include: can2510.h

Prototype: unsigned char CAN2510WriteXtd(
unsigned long msgId,
unsigned char msgPriority,
unsigned char numBytes,
unsigned char *data);

Arguments: msgId
CAN message identifier, 29 bits for an extended message. This 29-bit
identifier is stored in the lower 29 bits of msgId (an unsigned long).

msgPriority
Priority of buffer. One of the following values:
CAN2510_PRI_HIGHEST Highest message priority
CAN2510_PRI_HIGH High intermediate message priority
CAN2510_PRI_LOW Low intermediate message priority
CAN2510_PRI_LOWEST Lowest message priority

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is greater than
8, only the first 8 bytes of data will be sent.

data
Array of data values to be written. Must be at least as large as the value
specified in numBytes.

Remarks: This function will query each transmit buffer for a pending message, and
will post the specified message into the first available buffer.

Return Value: Value indicates which buffer was used to transmit the message
(0, 1 or 2).
-1 indicates that no message was sent.

File Name: canwritx.c

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 105

3.4 SOFTWARE I2C FUNCTIONS

These functions are designed to allow the implementation of an I2C bus using I/O pins
from a PIC18 microcontroller. The following functions are provided:

TABLE 3-6: I2C™ SOFTWARE FUNCTIONS

The precompiled versions of these functions use default pin assignments that can be
changed by redefining the macro assignments in the file sw_i2c.h, found in the h
subdirectory of the compiler installation:

TABLE 3-7: MACROS FOR SELECTING I2C™ PIN ASSIGNMENTS

After these definitions have been made, the user must recompile the I2C routines and
then use the updated files in the project. This can be accomplished by adding the library
source files into the project or by recompiling the library files using the provided batch
files.

Function Description

Clock_test Generate a delay for slave clock stretching.

SWAckI2C Generate an I2C™ bus Acknowledge condition.

SWGetcI2C Read a byte from the I2C bus.

SWGetsI2C Read a data string.

SWNotAckI2C Generate an I2C bus Not Acknowledge condition.

SWPutcI2C Write a single byte to the I2C bus.

SWPutsI2C Write a string to the I2C bus.

SWReadI2C Read a byte from the I2C bus.

SWRestartI2C Generate an I2C bus Restart condition.

SWStartI2C Generate an I2C bus Start condition.

SWStopI2C Generate an I2C bus Stop condition.

SWWriteI2C Write a single byte to the I2C bus.

I2C Line Macros Default Value Use

DATA Pin DATA_PIN

DATA_LAT

DATA_LOW

DATA_HI

PORTBbits.RB4

LATBbits.RB4

TRISBbits.TRISB4 = 0;

TRISBbits.TRISB4 = 1;

Pin used for the DATA line.

Latch associated with DATA pin.

Statement to configure the DATA
pin as an output.

Statement to configure the DATA
pin as an input.

CLOCK Pin SCLK_PIN

SCLK_LAT

CLOCK_LOW

CLOCK_HI

PORTBbits.RB3

LATBbits.LATB3

TRISBbits.TRISB3 = 0;

TRISBbits.TRISB3 = 1;

Pin used for the CLOCK line.

Latch associated with the
CLOCK pin.

Satement to configure the
CLOCK pin as an output.

Statement to configure the
CLOCK pin as an input.

MPLAB® C18 C Compiler Libraries

DS51297F-page 106 © 2005 Microchip Technology Inc.

3.4.1 Function Descriptions

Clock_test
Function: Generate a delay for slave clock stretching.

Include: sw_i2c.h

Prototype: char Clock_test(void);

Remarks: This function is called to allow for slave clock stretching. The delay time
may need to be adjusted per application requirements. If at the end of
the delay period the clock line is low, a value is returned indicating clock
error.

Return Value: 0 is returned if no clock error occurred
-2 is returned if a clock error occurred

File Name: swckti2c.c

SWAckI2C
SWNotAckI2C
Function: Generate an I2C bus Acknowledge/Not Acknowledge condition.

Include: sw_i2c.h

Prototype: char SWAckI2C(void);
char SWNotAckI2C(void);

Remarks: This function is called to generate an I2C bus Acknowledge sequence.

Return Value: 0 if the slave Acknowledges
-1 if the slave does not Acknowledge

File Name: swacki2c.c

SWGetcI2C
See SWReadI2C.

SWGetsI2C
Function: Read a string from the I2C bus.

Include: sw_i2c.h

Prototype: char SWGetsI2C(
 unsigned char *rdptr,
 unsigned char length);

Arguments: rdptr
Location to store the data read from the I2C bus.
length
Number of bytes to read.

Remarks: This function reads in a string of predetermined length.

Return Value: -1 if the master generated a NOT ACK bus condition before all bytes
have been received
0 otherwise

File Name: swgtsi2c.c

Code Example: char x[10];
SWGetsI2C(x,5);

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 107

SWNotAckI2C
See SWAckI2C.

SWPutcI2C
See SWWriteI2C.

SWPutsI2C
Function: Write a string to the I2C bus.

Include: sw_i2c.h

Prototype: char SWPutsI2C(
 unsigned char *wrdptr);

Arguments: wrdptr
Pointer to data to be written to the I2C bus.

Remarks: This function writes out a data string up to (but not including) a null
character.

Return Value: -1 if there was an error writing to the I2C bus
0 otherwise

File Name: swptsi2c.c

Code Example: char mybuff [] = “Hello”;
SWPutsI2C(mybuff);

SWReadI2C
SWGetcI2C
Function: Read a byte from the I2C bus.

Include: sw_i2c.h

Prototype: char SWReadI2C(void);

Remarks: This function reads in a single data byte by generating the appropriate
signals on the predefined I2C clock line.

Return Value: This function returns the acquired I2C data byte.
-1 if there was an error in this function.

File Name: swgtci2c.c

SWRestartI2C
Function: Generate an I2C Restart bus condition.

Include: sw_i2c.h

Prototype: void SWRestartI2C(void);

Remarks: This function is called to generate an I2C bus restart condition.

File Name: swrsti2c.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 108 © 2005 Microchip Technology Inc.

SWStartI2C
Function: Generate an I2C bus Start condition.

Include: sw_i2c.h

Prototype: void SWStartI2C(void);

Remarks: This function is called to generate an I2C bus Start condition.

File Name: swstri2c.c

SWStopI2C
Function: Generate an I2C bus Stop condition.

Include: sw_i2c.h

Prototype: void SWStopI2C(void);

Remarks: This function is called to generate an I2C bus Stop condition.

File Name: swstpi2c.c

SWWriteI2C
SWPutcI2C
Function: Write a byte to the I2C bus.

Include: sw_i2c.h

Prototype: char SWWriteI2C(
 unsigned char data_out);

Arguments: data_out
Single data byte to be written to the I2C bus.

Remarks: This function writes out a single data byte to the predefined data pin.

Return Value: 0 if write is successful
-1 if there was an error condition

File Name: swptci2c.c

Code Example if(SWWriteI2C(0x80))
 {
 errorHandler();
 }

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 109

3.4.2 Example of Use

The following is a simple code example illustrating a software I2C implementation
communicating with a Microchip 24LC01B I2C EE memory device.

#include <p18cxxx.h>
#include <sw_i2c.h>
#include <delays.h>

// FUNCTION Prototype
void main(void);
void byte_write(void);
void page_write(void);
void current_address(void);
void random_read(void);
void sequential_read(void);
void ack_poll(void);
unsigned char warr[] = {8,7,6,5,4,3,2,1,0};
unsigned char rarr[15];
unsigned char far *rdptr = rarr;
unsigned char far *wrptr = warr;
unsigned char var;

#define W_CS PORTA.2

//**
void main(void)
{
 byte_write();
 ack_poll();
 page_write();
 ack_poll();
 Nop();
 sequential_read();
 Nop();
 while (1); // Loop indefinitely
}

void byte_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x10); // word address
 SWAckI2C();
 var = SWPutcI2C(0x66); // data
 SWAckI2C();
 SWStopI2C();
}

void page_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x20); // word address
 SWAckI2C();
 var = SWPutsI2C(wrptr); // data
 SWStopI2C();
}

MPLAB® C18 C Compiler Libraries

DS51297F-page 110 © 2005 Microchip Technology Inc.

void sequential_read(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x00); // address to read from
 SWAckI2C();
 SWRestartI2C();
 var = SWPutcI2C(0xA1);
 SWAckI2C();
 var = SWGetsI2C(rdptr, 9);
 SWStopI2C();
}

void current_address(void)
{
 SWStartI2C();
 SWPutcI2C(0xA1); // control byte
 SWAckI2C();
 SWGetcI2C(); // word address
 SWNotAckI2C();
 SWStopI2C();
}

void ack_poll(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 while(SWAckI2C())
 {
 SWRestartI2C();
 var = SWPutcI2C(0xA0); // data
 }
 SWStopI2C();
}

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 111

3.5 SOFTWARE SPI™ FUNCTIONS

These functions are designed to allow the implementation of an SPI using I/O pins from
a PIC18 microcontroller. The following functions are provided:

TABLE 3-8: SOFTWARE SPI™ FUNCTIONS

The precompiled versions of these functions use default pin assignments that can be
changed by redefining the macro assignments in the file sw_spi.h, found in the h
subdirectory of the compiler installation:

TABLE 3-9: MACROS FOR SELECTING SPI™ PIN ASSIGNMENTS

Function Description

ClearCSSWSPI Clear the Chip Select (CS) pin.

OpenSWSPI Configure the I/O pins for use as an SPI™.

putcSWSPI Write a byte of data to the software SPI.

SetCSSWSPI Set the Chip Select (CS) pin.

WriteSWSPI Write a byte of data to the software SPI bus.

LCD
Controller

Line
Macros Default Value Use

CS Pin SW_CS_PIN

TRIS_SW_CS_PIN

PORTBbits.RB2

TRISBbits.TRISB2

Pin used for the Chip Select
(CS) line.

Bit that controls the direction of
the pin associated with the CS
line.

DIN Pin SW_DIN_PIN

TRIS_SW_DIN_PIN

PORTBbits.RB3

TRISBbits.TRISB3

Pin used for the DIN line.

Bit that controls the direction of
the pin associated with the DIN
line.

DOUT Pin SW_DOUT_PIN

TRIS_SW_DOUT_PIN

PORTBbits.RB7

TRISBbits.TRISB7

Pin used for the DOUT line.

Bit that controls the direction of
the pin associated with the
DOUT line.

SCK Pin SW_SCK_PIN

TRIS_SW_SCK_PIN

PORTBbits.RB6

TRISBbits.TRISB6

Pin used for the SCK line.

Bit that controls the direction of
the pin associated with the SCK
line.

MPLAB® C18 C Compiler Libraries

DS51297F-page 112 © 2005 Microchip Technology Inc.

The libraries that are provided can operate in one of four modes. The table below lists
the macros used for selecting between these modes. Exactly one of these must be
defined when rebuilding the software SPI libraries.

TABLE 3-10: MACROS FOR SELECTING MODES

After these definitions have been made, the user must recompile the software SPI
routines and then include the updated files in the project. This can be accomplished by
adding the software SPI source files into the project or by recompiling the library files
using the provided batch files.

3.5.1 Function Descriptions

Macro Default Value Meaning

MODE0 defined CKP = 0
CKE = 0

MODE1 not defined CKP = 1
CKE = 0

MODE2 not defined CKP = 0
CKE = 1

MODE3 not defined CKP = 1
CKE = 1

ClearCSSWSPI

Function: Clear the Chip Select (CS) pin that is specified in the sw_spi.h
header file.

Include: sw_spi.h

Prototype: void ClearCSSWSPI(void);

Remarks: This function clears the I/O pin that is specified in sw_spi.h to be the
Chip Select (CS) pin for the software SPI.

File Name: clrcsspi.c

OpenSWSPI
Function: Configure the I/O pins for the software SPI.

Include: sw_spi.h

Prototype: void OpenSWSPI(void);

Remarks: This function configures the I/O pins used for the software SPI to the
correct input or ouput state and logic level.

File Name: opensspi.c

putcSWSPI
See WriteSWSPI.

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 113

3.5.2 Example of Use

#include <p18C452.h>
#include <sw_spi.h>
#include <delays.h>

void main(void)
{
 char address;

 // configure software SPI
 OpenSWSPI();

 for(address=0; address<0x10; address++)
 {
 ClearCSSWSPI(); //clear CS pin
 WriteSWSPI(0x02); //send write cmd
 WriteSWSPI(address); //send address hi
 WriteSWSPI(address); //send address low
 SetCSSWSPI(); //set CS pin
 Delay10KTCYx(50); //wait 5000,000TCY
 }
}

SetCSSWSPI

Function: Set the Chip Select (CS) pin that is specified in the sw_spi.h header
file.

Include: sw_spi.h

Prototype: void SetCSSWSPI(void);

Remarks: This function sets the I/O pin that is specified in sw_spi.h to be the
Chip Select (CS) pin for the software SPI.

File Name: setcsspi.c

WriteSWSPI
putcSWSPI
Function: Write a byte to the software SPI.

Include: sw_spi.h

Prototype: char WriteSWSPI(char data);

Arguments: data
Data to be written to the software SPI.

Remarks: This function writes the specified byte of data out the software SPI and
returns the byte of data that was read. This function does not provide
any control of the Chip Select pin (CS).

Return Value: This function returns the byte of data that was read from the data in
(DIN) pin of the software SPI.

File Name: wrtsspi.c

Code Example: char addr = 0x10;
char result;
result = WriteSWSPI(addr);

MPLAB® C18 C Compiler Libraries

DS51297F-page 114 © 2005 Microchip Technology Inc.

3.6 SOFTWARE UART FUNCTIONS

These functions are designed to allow the implementation of a UART using I/O pins
from a PIC18 microcontroller. The following functions are provided:

TABLE 3-11: SOFTWARE UART FUNCTIONS

The precompiled versions of these functions use default pin assignments that can be
changed by redefining the equate (equ) statements in the files writuart.asm,
readuart.asm and openuart.asm, found in the src/traditional/pmc/sw_uart or
scr/extended/pmc/sw_uart subdirectory of the compiler installation:

TABLE 3-12: MACROS FOR SELECTING UART PIN ASSIGNMENTS

If changes to these definitions are made, the user must recompile the software UART
routines and then include the updated files in the project. This can be accomplished by
adding the software UART source files into the project or by recompiling the library files
using the batch files provided with the MPLAB C18 compiler installation.

The UART libraries also require that the following functions be defined by the user to
provide the appropriate delays:

TABLE 3-13: SOFTWARE UART DELAY FUNCTIONS

Function Description

getcUART Read a byte from the software UART.

getsUART Read a string from the software UART.

OpenUART Configure I/O pins for use as a UART.

putcUART Write a byte to the software UART.

putsUART Write a string to the software UART.

ReadUART Read a byte from the software UART.

WriteUART Write a byte to the software UART.

LCD
Controller

Line
Definition Default Value Use

TX Pin SWTXD

SWTXDpin

TRIS_SWTXD

PORTB

4

TRISB

Port used for the transmit line.

Bit in the SWTXD port used for the TX line.

Data Direction register associated with
the port used for the TX line.

RX Pin SWRXD

SWRXDpin

TRIS_SWRXD

PORTB

5

TRISB

Port used for the receive line.

Bit in the SWRXD port used for the RX line.

Data Direction register associated with
the port used for the RX line.

Function Behavior

DelayTXBitUART Delay for:
 ((((2*FOSC) / (4*baud)) + 1) / 2) - 12 cycles

DelayRXHalfBitUART Delay for:
 ((((2*FOSC) / (8*baud)) + 1) / 2) - 9 cycles

DelayRXBitUART Delay for:
 ((((2*FOSC) / (4*baud)) + 1) / 2) - 14 cycles

Software Peripheral Library

© 2005 Microchip Technology Inc. DS51297F-page 115

3.6.1 Function Descriptions

getcUART
See ReadUART.

getsUART
Function: Read a string from the software UART.

Include: sw_uart.h

Prototype: void getsUART(char * buffer,
 unsigned char len);

Arguments: buffer
Pointer to the string of characters read from the software UART.
len
Number of characters to be read from the software UART.

Remarks: This function reads len characters from the software UART and places
them in buffer.

File Name: getsuart.c

Code Example: char x[10];
getsUART(x, 5);

OpenUART
Function: Configure the I/O pins for the software UART.

Include: sw_uart.h

Prototype: void OpenUART(void);

Remarks: This function configures the I/O pins used for the software UART to the
correct input or ouput state and logic level.

File Name: openuart.asm

Code Example: OpenUART();

putcUART
See WriteUART.

putsUART
Function: Write a string to the software UART.

Include: sw_uart.h

Prototype: void putsUART(char * buffer);

Arguments: buffer
String to be written to the software UART.

Remarks: This function writes a string of characters to the software UART. The
entire string including the null is sent to the UART.

File Name: putsuart.c

Code Example: char mybuff [] = “Hello”;
putsUART(mybuff);

MPLAB® C18 C Compiler Libraries

DS51297F-page 116 © 2005 Microchip Technology Inc.

3.6.2 Example of Use

#include <p18C452.h>
#include <sw_uart.h>

void main(void)
{
 char data;

 // configure software UART
 OpenUART();

 while(1)
 {
 data = ReadUART(); //read a byte
 WriteUART(data); //bounce it back
 }
}

ReadUART
getcUART
Function: Read a byte from the software UART.

Include: sw_uart.h

Prototype: char ReadUART(void);

Remarks: This function reads a byte of data out the software UART.

Return Value: Returns the byte of data that was read from the receive data (RXD) pin
of the software UART.

File Name: readuart.asm

Code Example: char x;
x = ReadUART();

WriteUART
putcUART
Function: Write a byte to the software UART.

Include: sw_uart.h

Prototype: void WriteUART(char data);

Arguments: data
Byte of data to be written to software UART.

Remarks: This function writes the specified byte of data out the software UART.

File Name: writuart.asm

Code Example: char x = ‘H’;
WriteUART(x);

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 117

Chapter 4. General Software Library

4.1 INTRODUCTION

This chapter documents general software library functions found in the precompiled
standard C library file. The source code for all of these functions is included with
MPLAB C18 in the following subdirectories of the compiler installation:

• src\traditional\stdlib
• src\extended\stdlib
• src\traditional\delays
• src\extended\delays

The following categories of routines are supported by the MPLAB C18 library:

• Character Classification Functions
• Data Conversion Functions
• Memory and String Manipulation Functions
• Delay Functions
• Reset Functions
• Character Output Functions

4.2 CHARACTER CLASSIFICATION FUNCTIONS

These functions are consistent with the ANSI 1989 standard C library functions of the
same name. The following functions are provided:

TABLE 4-1: CHARACTER CLASSIFICATION FUNCTIONS

Function Description

isalnum Determine if a character is alphanumeric.

isalpha Determine if a character is alphabetic.

iscntrl Determine if a character is a control character.

isdigit Determine if a character is a decimal digit.

isgraph Determine if a character is a graphical character.

islower Determine if a character is a lowercase alphabetic character.

isprint Determine if a character is a printable character.

ispunct Determine if a character is a punctuation character.

isspace Determine if a character is a white space character.

isupper Determine if a character is an uppercase alphabetic character.

isxdigit Determine if a character is a hexadecimal digit.

MPLAB® C18 C Compiler Libraries

DS51297F-page 118 © 2005 Microchip Technology Inc.

4.2.1 Function Descriptions

isalnum
Function: Determine if a character is alphanumeric.

Include: ctype.h

Prototype: unsigned char isalnum(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be alphanumeric if it is in the range of ‘A’ to
‘Z’, ‘a’ to ‘z’ or ‘0’ to ‘9’.

Return Value: Non-zero if the character is alphanumeric
Zero otherwise

File Name: isalnum.c

isalpha
Function: Determine if a character is alphabetic.

Include: ctype.h

Prototype: unsigned char isalpha(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be alphabetic if it is in the range of ‘A’ to ‘Z’
or ‘a’ to ‘z’.

Return Value: Non-zero if the character is alphabetic
Zero otherwise

File Name: isalpha.c

iscntrl
Function: Determine if a character is a control character.

Include: ctype.h

Prototype: unsigned char iscntrl(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a control character if it is not a printable
character as defined by isprint().

Return Value: Non-zero if the character is a control character
Zero otherwise

File Name: iscntrl.c

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 119

isdigit
Function: Determine if a character is a decimal digit.

Include: ctype.h

Prototype: unsigned char isdigit(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a digit character if it is in the range of ‘0’
to ‘9’.

Return Value: Non-zero if the character is a digit character
Zero otherwise

File Name: isdigit.c

isgraph
Function: Determine if a character is a graphical character.

Include: ctype.h

Prototype: unsigned char isgraph(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a graphical case alphabetic character if
it is any printable character except space.

Return Value: Non-zero if the character is a graphical character
Zero otherwise

File Name: isgraph.c

islower
Function: Determine if a character is a lowercase alphabetic character.

Include: ctype.h

Prototype: unsigned char islower(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a lowercase alphabetic character if it is
in the range of ‘a’ to ‘z’.

Return Value: Non-zero if the character is a lowercase alphabetic character
Zero otherwise

File Name: islower.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 120 © 2005 Microchip Technology Inc.

isprint
Function: Determine if a character is a printable character.

Include: ctype.h

Prototype: unsigned char isprint(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a printable character if it is in the range
0x20 to 0x7e, inclusive.

Return Value: Non-zero if the character is a printable character
Zero otherwise

File Name: isprint.c

ispunct
Function: Determine if a character is a punctuation character.

Include: ctype.h

Prototype: unsigned char ispunct(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a punctuation character if it is a
printable character which is neither a space nor an alphanumeric
character.

Return Value: Non-zero if the character is a punctuation character
Zero otherwise

File Name: ispunct.c

isspace
Function: Determine if a character is a white space character.

Include: ctype.h

Prototype: unsigned char isspace (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a white space character if it is one of
the following: space (‘ ’), tab(‘\t’), carriage return (‘\r’), new line (‘\n’),
form feed (‘\f’) or vertical tab (‘\v’).

Return Value: Non-zero if the character is a white space character
Zero otherwise

File Name: isspace.c

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 121

isupper
Function: Determine if a character is an uppercase alphabetic character.

Include: ctype.h

Prototype: unsigned char isupper (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be an uppercase alphabetic character if it
is in the range of ‘A’ to ‘Z’.

Return Value: Non-zero if the character is an uppercase alphabetic character
Zero otherwise

File Name: isupper.c

isxdigit
Function: Determine if a character is a hexadecimal digit.

Include: ctype.h

Prototype: unsigned char isxdigit(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a hexidecimal digit character if it is in
the range of ‘0’ to ‘9’, ‘a’ to ‘f’ or ‘A’ to ‘F’.

Return Value: Non-zero if the character is a hexidecimal digit character
Zero otherwise

File Name: isxdig.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 122 © 2005 Microchip Technology Inc.

4.3 DATA CONVERSION FUNCTIONS

Except as noted in the function descriptions, these functions are consistent with the
ANSI 1989 standard C library functions of the same name. The functions provided are:

TABLE 4-2: DATA CONVERSION FUNCTIONS

4.3.1 Function Descriptions

Function Description

atob Convert a string to an 8-bit signed byte.

atof Convert a string into a floating point value.

atoi Convert a string to a 16-bit signed integer.

atol Convert a string into a long integer representation.

btoa Convert an 8-bit signed byte to a string.

itoa Convert a 16-bit signed integer to a string.

ltoa Convert a signed long integer to a string.

rand Generate a pseudo-random integer.

srand Set the starting seed for the pseudo-random number generator.

tolower Convert a character to a lowercase alphabetical ASCII character.

toupper Convert a character to an uppercase alphabetical ASCII character.

ultoa Convert an unsigned long integer to a string.

atob
Function: Convert a string to an 8-bit signed byte.

Include: stdlib.h

Prototype: signed char atob(const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into an 8-bit signed byte (-128
to 127). The input string must be in base 10 (decimal radix) and can
begin with a character indicating sign (‘+’ or ‘-’). Overflow results are
undefined. This function is an MPLAB C18 extension to the ANSI
standard libraries.

Return Value: 8-bit signed byte for all strings in the range (-128 to 127).

File Name: atob.asm

atof
Function: Convert a string into a floating point value.

Include: stdlib.h

Prototype: double atof (const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into a floating point value.
Examples of floating point strings that are recognized are:
-3.1415
1.0E2
1.0E+2
1.0E-2

Return Value: The function returns the converted value.

File Name: atof.c

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 123

atoi
Function: Convert a string to a 16-bit signed integer.

Include: stdlib.h

Prototype: int atoi(const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into an 16-bit signed integer
(-32768 to 32767). The input string must be in base 10 (decimal radix)
and can begin with a character indicating sign (‘+’ or ‘-’). Overflow
results are undefined. This function is an MPLAB C18 extension to the
ANSI standard libraries.

Return Value: 16-bit signed integer for all strings in the range (-32768 to 32767).

File Name: atoi.asm

atol
Function: Convert a string into a long integer representation.

Include: stdlib.h

Prototype: long atol(const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into a long value. The input
string must be in base 10 (decimal radix) and can begin with a charac-
ter indicating sign (‘+’ or ‘-’). Overflow results are undefined. This
function is an MPLAB C18 extension to the ANSI standard libraries.

Return Value: The function returns the converted value.

File Name: atol.asm

btoa
Function: Convert an 8-bit signed byte to a string.

Include: stdlib.h

Prototype: char * btoa(signed char value,
 char * string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string that will hold the result. string must be long
enough to hold the ASCII representation, including the sign character
for negative values and a trailing null character.

Remarks: This function converts the 8-bit signed byte in the argument value to a
ASCII string representation.

This function is an MPLAB C18 extension of the ANSI required
libraries.

Return Value: Pointer to the result string.

File Name: btoa.asm

MPLAB® C18 C Compiler Libraries

DS51297F-page 124 © 2005 Microchip Technology Inc.

itoa
Function: Convert a 16-bit signed integer to a string.

Include: stdlib.h

Prototype: char * itoa(int value,
 char * string);

Arguments: value
A 16-bit signed integer.
string
Pointer to ASCII string that will hold the result. string must be long
enough to hold the ASCII representation, including the sign character
for negative values and a trailing null character.

Remarks: This function converts the 16-bit signed integer in the argument value
to a ASCII string representation.

This function is an MPLAB C18 extension of the ANSI required
libraries.

Return Value: Pointer to the result string.

File Name: itoa.asm

ltoa
Function: Convert a signed long integer to a string.

Include: stdlib.h

Prototype: char * ltoa(long value,
 char * string);

Arguments: value
A signed long integer to be converted.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the signed long integer in the argument value
to a ASCII string representation. string must be long enough to hold
the ASCII representation, including the sign character for negative
values and a trailing null character. This function is an MPLAB C18
extension to the ANSI required libraries.

Return Value: Pointer to the result string.

File Name: ltoa.asm

rand
Function: Generate a pseudo-random integer.

Include: stdlib.h

Prototype: int rand(void);

Remarks: Calls to this function return pseudo-random integer values in the range
[0,32767]. To use this function effectively, you must seed the random
number generator using the srand() function. This function will
always return the same sequence of integers when identical seed
values are used.

Return Value: A psuedo-random integer value.

File Name: rand.asm

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 125

srand
Function: Set the starting seed for the pseudo-random number sequence.

Include: stdlib.h

Prototype: void srand(unsigned int seed);

Arguments: seed
The starting value for the pseudo-random number sequence.

Remarks: This function sets the starting seed for the pseudo-random number
sequence generated by the rand() function. The rand() function will
always return the same sequence of integers when identical seed
values are used. If rand() is called without srand() having first been
called, the sequence of numbers generated will be the same as if
srand() had been called with a seed value of 1.

File Name: rand.asm

tolower
Function: Convert a character to a lowercase alphabetical ASCII character.

Include: ctype.h

Prototype: char tolower(char ch);

Arguments: ch
Character to be converted.

Remarks: This function converts ch to a lowercase alphabetical ASCII character
provided that the argument is a valid uppercase alphabetical character.

Return Value: This function returns a lowercase character if the argument was upper-
case to begin with; otherwise the original character is returned.

File Name: tolower.c

toupper
Function: Convert a character to an uppercase alphabetical ASCII character.

Include: ctype.h

Prototype: char toupper(char ch);

Arguments: ch
Character to be converted.

Remarks: This function converts ch to a uppercase alphabetical ASCII character
provided that the argument is a valid lowercase alphabetical character.

Return Value: This function returns an uppercase character if the argument was
lowercase to begin with; otherwise the original character is returned.

File Name: toupper.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 126 © 2005 Microchip Technology Inc.

4.4 MEMORY AND STRING MANIPULATION FUNCTIONS

Except as noted in the function descriptions, these functions are consistent with the
ANSI (1989) standard C library functions of the same name. The following functions are
provided:

ultoa
Function: Convert an unsigned long integer to a string.

Include: stdlib.h

Prototype: char * ultoa(unsigned long value,
 char * string);

Arguments: value
An unsigned long integer to be converted.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the unsigned long integer in the argument
value to a ASCII string representation. string must be long enough
to hold the ASCII representation, including a trailing null character. This
function is an MPLAB C18 extension to the ANSI required libraries.

Return Value: Pointer to the result string.

File Name: ultoa.asm

TABLE 4-3: MEMORY AND STRING MANIPULATION FUNCTIONS

Function Description

memchr
memchrpgm

Search for a value in a specified memory region.

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm

Compare the contents of two arrays.

memcpy
memcpypgm
memcpypgm2ram
memcpyram2pgm

Copy a buffer.

memmove
memmovepgm
memmovepgm2ram
memmoveram2pgm

Copy a buffer, where the source and destination may overlap.

memset
memsetpgm

Initialize an array with a single repeated value.

strcat
strcatpgm
strcatpgm2ram
strcatram2pgm

Append a copy of the source string to the end of the destination
string.

strchr
strchrpgm

Locate the first occurrence of a value in a string.

strcmp
strcmppgm
strcmppgm2ram
strcmpram2pgm

Compare two strings.

strcpy
strcpypgm
strcpypgm2ram
strcpyram2pgm

Copy a string from data or program memory into data memory.

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 127

strcspn
strcspnpgm
strcspnpgmram
strcspnrampgm

Calculate the number of consecutive characters at the beginning of a
string that are not contained in a set of characters.

strlen
strlenpgm

Determine the length of a string.

strlwr
strlwrpgm

Convert all uppercase characters in a string to lowercase.

strncat
strncatpgm
strncatpgm2ram
strncatram2pgm

Append a specified number of characters from the source string to
the end of the destination string.

strncmp
strncmppgm
strncmppgm2ram
strncmpram2pgm

Compare two strings, up to a specified number of characters.

strncpy
strncpypgm
strncpypgm2ram
strncpyram2pgm

Copy characters from the source string into the destination string, up
to the specified number of characters.

strpbrk
strpbrkpgm
strpbrkpgmram
strpbrkrampgm

Search a string for the first occurrence of a character from a set of
characters.

strrchr
strrchrpgm

Locate the last occurrence of a specified character in a string.

strspn
strspnpgm
strspnpgmram
strspnrampgm

Calculate the number of consecutive characters at the beginning of a
string that are contained in a set of characters.

strstr
strstrpgm
strstrpgmram
strstrrampgm

Locate the first occurrence of a string inside another string.

strtok
strtokpgm
strtokpgmram
strtokrampgm

Break a string into substrings or tokens, by inserting null characters
in place of specified delimiters.

strupr
struprpgm

Convert all lowercase characters in a string to uppercase.

TABLE 4-3: MEMORY AND STRING MANIPULATION FUNCTIONS (CONTINUED)

MPLAB® C18 C Compiler Libraries

DS51297F-page 128 © 2005 Microchip Technology Inc.

4.4.1 Function Descriptions

memchr
memchrpgm
Function: Locate the first occurrence of a byte value in a specified memory

region.

Include: string.h

Prototype: void * memchr(const void *mem,
 unsigned char c,
 size_t n);
rom char * memchrpgm(const rom char *mem,
 const unsigned char c,
 sizerom_t n);

Arguments: mem
Pointer to a memory region.
c
Byte value to find.
n
Maximum number of bytes to search.

Remarks: This function searches up to n bytes of the region mem to find the first
occurrence of c.
This function differs from the ANSI specified function in that c is defined
as an unsigned char parameter rather than an int parameter.

Return Value: If c appears in the first n bytes of mem, this function returns a pointer to
the character in mem. Otherwise, it returns a null pointer.

File Names: memchr.asm
mchrpgm.asm

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm
Function: Compare the contents of two arrays of bytes.

Include: string.h

Prototype: signed char memcmp(
 const void * buf1,
 const void * buf2,
 size_t memsize);
signed char memcmppgm(
 const rom void * buf1,
 const rom void * buf2,
 sizerom_t memsize);
signed char memcmppgm2ram(
 const void * buf1,
 const rom void * buf2,
 sizeram_t memsize);
signed char memcmpram2pgm(
 const rom void * buf1,
 const void * buf2,
 sizeram_t memsize);

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 129

Arguments: buf1
Pointer to first array.
buf2
Pointer to second array.
memsize
Number of elements to be compared in arrays.

Remarks: This function compares the first memsize number of bytes in buf1 to
the first memsize number of bytes in buf2 and returns a value
indicating whether the buffers are less than, equal to or greater than
each other.

Return Value: Returns a value that is:
<0 if buf1 is less than buf2
==0 if buf1 is the same as buf2
>0 if buf1 is greater than buf2

File Names: memcmp.asm
memcmpp2p.asm
memcmpp2r.asm
memcmpr2p.asm

memcpy
memcpypgm
memcpypgm2ram
memcpyram2pgm
Function: Copy the contents of the source buffer into the destination buffer.

Include: string.h

Prototype: void * memcpy(
 void * dest,
 const void * src,
 size_t memsize);
rom void * memcpypgm(
 rom void * dest,
 const rom void * src,
 sizerom_t memsize);
void * memcpypgm2ram(
 void * dest,
 const rom void * src,
 sizeram_t memsize);
rom void * memcpyram2pgm(
 rom void * dest,
 const void * src,
 sizeram_t memsize);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of bytes of src array to copy into dest.

Remarks: This function copies the first memsize number of bytes in src to the
array dest. If src and dest overlap, the behavior is undefined.

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 130 © 2005 Microchip Technology Inc.

Return Value: This function returns the value of dest.

File Names: memcpy.asm
memcpyp2p.asm
memcpyp2r.asm
memcpyr2p.asm

memmove
memmovepgm
memmovepgm2ram
memmoveram2pgm
Function: Copy the contents of the source buffer into the destination buffer, even

if the regions overlap.

Include: string.h

Prototype: void * memmove(void * dest,
 const void * src,
 size_t memsize);
rom void * memmovepgm(
 rom void * dest,
 const rom void * src,
 sizerom_t memsize);
void * memmovepgm2ram(
 void * dest,
 const rom void * src,
 sizeram_t memsize);
rom void * memmoveram2pgm(
 rom void * dest,
 const void * src,
 sizeram_t memsize);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of bytes of src array to copy into dest.

Remarks: This function copies the first memsize number of bytes in src to the
array dest. This function performs correctly even if src and dest
overlap.

Return Value: This function returns the value of dest.

File Names: memmove.asm
memmovp2p.asm
memmovp2r.asm
memmovr2p.asm

memcpy
memcpypgm
memcpypgm2ram
memcpyram2pgm (Continued)

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 131

memset
memsetpgm
Function: Copy the specified character into the destination array.

Include: string.h

Prototype: void * memset(void * dest,
 unsigned char value,
 size_t memsize);
rom void * memsetpgm(
 rom void * dest,
 unsigned char value,
 sizerom_t memsize);

Arguments: dest
Pointer to destination array.
value
Character value to be copied.
memsize
Number of bytes of dest into which value is copied.

Remarks: This function copies the character value into the first memsize bytes
of the array dest. This functions differs from the ANSI specified
function in that value is defined as an unsigned char rather than as
an int parameter.

Return Value: This function returns the value of dest.

File Name: memset.asm
memsetpgm.asm

strcat
strcatpgm
strcatpgm2ram
strcatram2pgm
Function: Append a copy of the source string to the end of the destination string.

Include: string.h

Prototype: char * strcat(char * dest,
 const char * src);
rom char * strcatpgm(
 rom char * dest,
 const rom char * src);
char * strcatpgm2ram(
 char * dest,
 const rom char * src);
rom char * strcatram2pgm(
 rom char * dest,
 const char * src);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.

Remarks: This function copies the string in src to the end of the string in dest.
The src string starts at the null in dest. A null character is added to
the end of the resulting string in dest. If src and dest overlap, the
behavior is undefined.

Return Value: This function returns the value of dest.

MPLAB® C18 C Compiler Libraries

DS51297F-page 132 © 2005 Microchip Technology Inc.

File Names: strcat.asm
scatp2p.asm
scatp2r.asm
scatp2p.asm

strchr
strchrpgm
Function: Locate the first occurrence of a specified character in a string.

Include: string.h

Prototype: char * strchr(const char * str,
 unsigned char c);
rom char * strchrpgm(
 const rom char * str,
 unsigned char c);

Arguments: str
Pointer to a string to be searched.
c
Character to find.

Remarks: This function searches the string str to find the first occurrence of
character c.
This function differs from the ANSI specified function in that c is defined
as an unsigned char parameter rather than an int parameter.

Return Value: If c appears in str, this function returns a pointer to the character in
str. Otherwise, it returns a null pointer.

File Names: strchr.asm
schrpgm.asm

strcmp
strcmppgm
strcmppgm2ram
strcmpram2pgm
Function: Compare two strings.

Include: string.h

Prototype: signed char strcmp(
 const char * str1,
 const char * str2);
signed char strcmppgm(
 const rom char * str1,
 const rom char * str2);
signed char strcmppgm2ram(
 const char * str1,
 const rom char * str2);
signed char strcmpram2pgm(
 const rom char * str1,
 const char * str2);

strcat
strcatpgm
strcatpgm2ram
strcatram2pgm (Continued)

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 133

Arguments: str1
Pointer to first string.
str2
Pointer to second string.

Remarks: This function compares the string in str1 to the string in str2 and
returns a value indicating if str1 is less than, equal to or greater than
str2.

Return Value: Returns a value that is:
<0 if str1 is less than str2
==0 if str1 is the same as str2
>0 if str1 is greater than str2

File Name: strcmp.asm
scmpp2p.asm
scmpp2r.asm
scmpr2p.asm

strcpy
strcpypgm
strcpypgm2ram
strcpyram2pgm
Function: Copy the source string into the destination string.

Include: string.h

Prototype: char * strcpy(char * dest,
 const char * src);
rom char * strcpypgm(
 rom char * dest,
 const rom char * src);char *
char * strcpypgm2ram(
 char * dest,
 const rom char *src);
rom char * strcpyram2pgm(
 rom char * dest,
 const char * src);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.

Remarks: This function copies the string in src to dest. Characters in src are
copied up to, and including, the terminating null character in src. If src
and dest overlap, the behavior is undefined.

Return Value: This function returns the value of dest.

File Name: strcpy.asm
scpyp2p.asm
scpyp2r.asm
scpyr2p.asm

strcmp
strcmppgm
strcmppgm2ram
strcmpram2pgm

MPLAB® C18 C Compiler Libraries

DS51297F-page 134 © 2005 Microchip Technology Inc.

strcspn
strcspnpgm
strcspnpgmram
strcspnrampgm
Function: Calculate the number of consecutive characters at the beginning of a

string that are not contained in a set of characters.

Include: string.h

Prototype: size_t strcspn(const char * str1,
 const char * str2);
sizerom_t strcspnpgm(
 const rom char * str1,
 const rom char * str2);
sizerom_t strcspnpgmram(
 const rom char * str1,
 const char * str2);
sizeram_t strcspnrampgm(
 const char * str1,
 const rom char * str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will determine the number of consecutive characters from
the beginning of str1 that are not contained in str2. For example:
str1 str2 result
“hello” “aeiou” 1
“antelope” “aeiou” 0
“antelope” “xyz” 8

Return Value: This function returns the number of consecutive characters from the
beginning of str1 that are not contained in str2, as shown in the
examples above.

File Names: strcspn.asm
scspnpp.asm
scspnpr.asm
scspnrp.asm

strlen
strlenpgm
Function: Return the length of the string.

Include: string.h

Prototype: size_t strlen(const char * str);
sizerom_t strlenpgm(const rom char * str);

Arguments: str
Pointer to string.

Remarks: This function determines the length of the string, not including the
terminating null character.

Return Value: This function returns the length of the string.

File Name: strlen.asm
slenpgm.asm

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 135

strlwr
strlwrpgm
Function: Convert all uppercase characters in a string to lowercase.

Include: string.h

Prototype: char * strlwr(char * str);
rom char * strlwrpgm(rom char * str);

Arguments: str
Pointer to string.

Remarks: This function converts all uppercase characters in str to lowercase
characters. All characters that are not uppercase (A to Z) are not
affected.

Return Value: This function returns the value of str.

File Name: strlwr.asm
slwrpgm.asm

strncat
strncatpgm
strncatpgm2ram
strncatram2pgm
Function: Append a specified number of characters from the source string to the

destination string.

Include: string.h

Prototype: char * strncat(char * dest,
 const char * src,
 size_t n);
rom char * strncatpgm(
 rom char * dest,
 const rom char * src,
 sizerom_t n);
char * strncatpgm2ram(
 char * dest,
 const rom char * src,
 sizeram_t n);
rom char * strncatram2pgm(
 rom char * dest,
 const char * src,
 sizeram_t n);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
n
Number of characters to append.

Remarks: This function appends exactly n characters from the string in src to
the end of the string in dest. If a null character is copied before n
characters have been copied, null characters will be appended to dest
until exactly n characters have been appended.
If src and dest overlap, the behavior is undefined.
If a null character is not encountered, then a null character is not
appended.

Return Value: This function returns the value of dest.

MPLAB® C18 C Compiler Libraries

DS51297F-page 136 © 2005 Microchip Technology Inc.

File Names: strncat.asm
sncatp2p.asm
sncatp2r.asm
sncatr2p.asm

strncmp
strncmppgm
strncmppgm2ram
strncmpram2pgm
Function: Compare two strings, up to a specified number of characters.

Include: string.h

Prototype: signed char strncmp(const char * str1,
 const char * str2,
 size_t n);
signed char strncmppgm(
 const rom char * str1,
 const rom char * str2,
 sizerom_t n);
signed char strncmppgm2ram(
 const char * str1,
 const rom char * str2,
 sizeram_t n);
signed char strncmpram2pgm(
 const rom char * str1,
 const char * str2,
 sizeram_t n);

Arguments: str1
Pointer to first string.
str2
Pointer to second string.
n
Maximum number of characters to compare.

Remarks: This function compares the string in str1 to the string in str2 and
returns a value indicating if str1 is less than, equal to or greater than
str2. If n characters are compared and no differences are found, this
function will return a value indicating that the strings are equivalent.

Return Value: Returns a value based on the first character that differs between str1
and str2. It returns:
<0 if str1 is less than str2
==0 if str1 is the same as str2
>0 if str1 is greater than str2

File Name: strncmp.asm
sncmpp2p.asm
sncmpp2r.asm
sncmpr2p.asm

strncat
strncatpgm
strncatpgm2ram
strncatram2pgm (Continued)

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 137

strncpy
strncpypgm
strncpypgm2ram
strncpyram2pgm
Function: Copy characters from the source string into the destination string, up to

the specified number of characters.

Include: string.h

Prototype: char * strncpy(char * dest,
 const char * src,
 size_t n);
rom char * strncpypgm(
 rom char * dest,
 const rom char * src,
 sizerom_t n);
char *strncpypgm2ram(
 char * dest,
 const rom char * src,
 sizeram_t n);
rom char * strncpyram2pgm(
 rom char * dest,
 const char * src,
 sizeram_t n);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.
n
Maximum number of characters to copy.

Remarks: This function copies the string in src to dest. Characters in src are
copied into dest until the terminating null character or n characters
have been copied. If n characters were copied and no null character
was found then dest will not be null-terminated.
If copying takes place between objects that overlap, the behavior is
undefined.

Return Value: This function returns the value of dest.

File Name: strncpy.asm
sncpyp2p.asm
sncpyp2r.asm
sncpyr2p.asm

MPLAB® C18 C Compiler Libraries

DS51297F-page 138 © 2005 Microchip Technology Inc.

strpbrk
strpbrkpgm
strpbrkpgmram
strpbrkrampgm
Function: Search a string for the first occurrence of a character from a specified

set of characters.

Include: string.h

Prototype: char * strpbrk(const char * str1,
 const char * str2);
rom char * strpbrkpgm(
 const rom char * str1,
 const rom char * str2);
rom char * strpbrkpgmram(
 const rom char * str1,
 const char * str2);
char * strpbrkrampgm(
 const char * str1,
 const rom char * str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will search str1 for the first occurrence of a character
contained in str2.

Return Value: If a character in str2 is found, a pointer to that character in str1 is
returned. If no character from str2 is found in str1, a null pointer is
returned.

File Names: strpbrk.asm
spbrkpp.asm
spbrkpr.asm
spbrkrp.asm

strrchr
Function: Locate the last occurrence of a specified character in a string.

Include: string.h

Prototype: char * strrchr(const char * str,
 const char c);

Arguments: str
Pointer to a string to be searched.
c
Character to find.

Remarks: This function searches the string str, including the terminating null
character, to find the last occurrence of character c.
This function differs from the ANSI specified function in that c is defined
as an unsigned char parameter rather than an int parameter.

Return Value: If c appears in str, this function returns a pointer to the character in
str. Otherwise, it returns a null pointer.

File Names: strrchr.asm

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 139

strspn
strspnpgm
strspnpgmram
strspnrampgm
Function: Calculate the number of consecutive characters at the beginning of a

string that are contained in a set of characters.

Include: string.h

Prototype: size_t strspn(const char * str1,
 const char * str2);
sizerom_t strspnpgm(
 const rom char * str1,
 const rom char * str2);
sizerom_t strspnpgmram(
 const rom char * str1,
 const char * str2);
sizeram_t strspnrampgm(
 const char * str1,
 const rom char * str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will determine the number of consecutive characters from
the beginning of str1 that are contained in str2. For example:
str1 str2 result
“banana” “ab” 2
“banana” “abn” 6
“banana” “an” 0

Return Value: This function returns the number of consecutive characters from the
beginning of str1 that are contained in str2, as shown in the
examples above.

File Names: strspn.asm
sspnpp.asm
sspnpr.asm
sspnrp.asm

MPLAB® C18 C Compiler Libraries

DS51297F-page 140 © 2005 Microchip Technology Inc.

strstr
strstrpgm
strstrpgmram
strstrrampgm
Function: Locate the first occurrence of a string inside another string.

Include: string.h

Prototype: char * strstr(const char * str,
 const char * substr);
rom char * strstrpgm(
 const rom char * str,
 const rom char * substr);
rom char * strstrpgmram(
 const rom char * str,
 const char * substr);
char * strstrrampgm(
 const char * str,
 const rom char * substr);

Arguments: str
Pointer to a string to be searched.
substr
Pointer to a string pattern for which to search.

Remarks: This function will find the first occurrence of the string substr
(excluding the null terminator) within string str.

Return Value: If the string is located, a pointer to that string in str will be returned.
Otherwise a null pointer is returned.

File Names: strstr.asm
sstrpp.asm
sstrpr.asm
sstrrp.asm

strtok
strtokpgm
strtokpgmram
strtokrampgm
Function: Break a string into substrings or tokens, by inserting null characters in

place of specified delimiters.

Include: string.h

Prototype: char * strtok(char * str,
 const char * delim);
rom char * strtokpgm(
 rom char * str,
 const rom char * delim);
char * strtokpgmram(
 char * str,
 const rom char * delim);
rom char * strtokrampgm(
 rom char * str,
 const char * delim);

Arguments: str
Pointer to a string to be searched.
delim
Pointer to a set of characters that indicate the end of a token.

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 141

Remarks: This function can be used to split up a string into substrings by
replacing specified characters with null characters. The first time this
function is invoked on a particular string, that string should be passed in
str. After the first time, this function can continue parsing the string
from the last delimiter by invoking it with a null value passed in str.
When strtok is invoked with a non-null parameter for str, it starts
searching str from the beginning. It skips all leading characters that
appear in the string delim, then skips all characters not appearing in
delim, then sets the next character to null.
When strtok is invoked with a null parameter for str, it searches the
string that was most recently examined, beginning with the character
after the one that was set to null during the previous call. It skips all
characters not appearing in delim, then sets the next character to null.
If strtok finds the end of the string before it finds a delimiter, it does
not modify the string.
The set of characters that is passed in delim need not be the same for
each call to strtok.

Return Value: If a delimiter was found, this function returns a pointer into str to the
first character that was searched that did not appear in the set of
characters delim. This character represents the first character of a
token that was created by the call.
If no delimiter was found prior to the terminating null character, a null
pointer is returned from the function.

File Names: strtok.asm
stokpgm.asm
stokpr.asm
stokrp.asm

strupr
struprpgm
Function: Convert all lowercase characters in a string to uppercase.

Include: string.h

Prototype: char * strupr(char * str);
rom char * struprpgm(rom char * str);

Arguments: str
Pointer to string.

Remarks: This function converts all lowercase characters in str to uppercase
characters. All characters that are not lowercase (a to z) are not
affected.

Return Value: This function returns the value of str.

File Name: strupr.asm
suprpgm.asm

strtok
strtokpgm
strtokpgmram
strtokrampgm (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 142 © 2005 Microchip Technology Inc.

4.5 DELAY FUNCTIONS

The delay functions execute code for a specific number of processor instruction cycles.
For time based delays, the processor operating frequency must be taken into account.
The following routines are provided:

TABLE 4-4: DELAY FUNCTIONS

4.5.1 Function Descriptions

Function Description

Delay1TCY Delay one instruction cycle.

Delay10TCYx Delay in multiples of 10 instruction cycles.

Delay100TCYx Delay in multiples of 100 instruction cycles.

Delay1KTCYx Delay in multiples of 1,000 instruction cycles.

Delay10KTCYx Delay in multiples of 10,000 instruction cycles.

Delay1TCY
Function: Delay 1 instruction cycle (TCY).

Include: delays.h

Prototype: void Delay1TCY(void);

Remarks: This function is actually a #define for the NOP instruction. When
encountered in the source code, the compiler simply inserts a NOP.

File Name: #define in delays.h

Delay10TCYx
Function: Delay in multiples of 10 instruction cycles (TCY).

Include: delays.h

Prototype: void Delay10TCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range [1,255]
will delay (unit * 10) cycles. A value of 0 causes a delay of 2,560
cycles.

Remarks: This function creates a delay in multiples of 10 instruction cycles.

File Name: d10tcyx.asm

Delay100TCYx
Function: Delay in multiples of 100 instruction cycles (TCY).

Include: delays.h

Prototype: void Delay100TCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range [1,255]
will delay (unit * 100) cycles. A value of 0 causes a delay of 25,600
cycles.

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 143

Remarks: This function creates a delay in multiples of 100 instruction cycles. This
function uses the globally allocated variable, DelayCounter1. If this
function is used in both interrupt and mainline code, the variable
DelayCounter1 should be saved and restored in the interrupt
handler. Refer to the save= clause of the #pragma interrupt or
#pragma interruptlow directives for more information. Note that
other delay functions also use the globally allocated DelayCounter1
variable.

File Name: d100tcyx.asm

Delay1KTCYx
Function: Delay in multiples of 1,000 instruction cycles (TCY).

Include: delays.h

Prototype: void Delay1KTCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range [1,255]
will delay (unit * 1000) cycles. A value of 0 causes a delay of 256,000
cycles.

Remarks: This function creates a delay in multiples of 1,000 instruction cycles.
This function uses the globally allocated variables, DelayCounter1
and DelayCounter2. If this function is used in both interrupt and
mainline code, these variables, DelayCounter1 and
DelayCounter2, should be saved and restored in the interrupt
handler. Refer to the save= clause of the #pragma interrupt and
#pragma interruptlow directives for more information. Note that
other delay functions also use the globally allocated DelayCounter1
variable.

File Name: d1ktcyx.asm

Delay10KTCYx
Function: Delay in multiples of 10,000 instruction cycles (TCY).

Include: delays.h

Prototype: void Delay10KTCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range [1,255]
will delay (unit * 10000) cycles. A value of 0 causes a delay of
2,560,000 cycles.

Remarks: This function creates a delay in multiples of 10,000 instruction cycles.
This function uses the globally allocated variable, DelayCounter1. If
this function is used in both interrupt and mainline code, the variable
DelayCounter1 should be saved and restored in the interrupt
handler. Refer to the save= clause of the #pragma interrupt or
#pragma interruptlow directives for more information. Note that
other delay functions also use the globally allocated DelayCounter1
variable.

File Name: d10ktcyx.asm

Delay100TCYx (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 144 © 2005 Microchip Technology Inc.

4.6 RESET FUNCTIONS

The Reset functions may be used to help determine the source of a Reset or wake-up
event and for reconfiguring the processor status following a Reset. The following
routines are provided:

TABLE 4-5: RESET FUNCTIONS

4.6.1 Function Descriptions

Function Description

isBOR Determine if the cause of a Reset was the Brown-out Reset circuit.

isLVD Determine if the cause of a Reset was a low voltage detect condition.

isMCLR Determine if the cause of a Reset was the MCLR pin.

isPOR Detect a Power-on Reset condition.

isWDTTO Determine if the cause of a Reset was a Watchdog timer time-out.

isWDTWU Determine if the cause of a wake-up was the Watchdog timer.

isWU Detects if the microcontroller was just waken up from Sleep from the
MCLR pin or an interrupt.

StatusReset Set the POR and BOR bits.

Note: If you are using Brown-out Reset (BOR) or the Watchdog Timer (WDT),
then you must define the enable macros (#define BOR_ENABLED and
#define WDT_ENABLED, respectively) in the header file reset.h and
recompile the source code.
If the device is configured to reset on stack overflow/underflow, then you
must define the enable macro (#define STVR_ENABLED) in the header file
reset.h and recompile the source code.

isBOR
Function: Determine if the cause of a Reset was the Brown-out Reset circuit.

Include: reset.h

Prototype: char isBOR(void);

Remarks: This function detects if the microcontroller was reset due to the
Brown-out Reset circuit. This condition is indicated by the following
Status bits:
POR = 1
BOR = 0

Return Value: 1 if the Reset was due to the Brown-out Reset circuit
0 otherwise

File Name: isbor.c

isLVD
Function: Determine if the cause of a Reset was a low voltage detect condition.

Include: reset.h

Prototype: char isLVD(void);

Remarks: This function detects if the voltage of the device has become lower than
the value specified in the LVDCON register (LVDL3:LVDL0 bits.)

Return Value: 1 if a Reset was due to LVD during normal operation
0 otherwise

File Name: islvd.c

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 145

isMCLR
Function: Determine if the cause of a Reset was the MCLR pin.

Include: reset.h

Prototype: char isMCLR(void);

Remarks: This function detects if the microcontroller was reset via the MCLR pin
while in normal operation. This situation is indicated by the following
Status bits:
POR = 1
If Brown-out is enabled, BOR = 1
If WDT is enabled, TO = 1
PD = 1
If stack overflow/underflow reset is enabled, then the stack overflow
and underflow flag bits will be cleared in the STKPTR register.

Return Value: 1 if the Reset was due to MCLR during normal operation
0 otherwise

File Name: ismclr.c

isPOR
Function: Detect a Power-on Reset condition.

Include: reset.h

Prototype: char isPOR(void);

Remarks: This function detects if the microcontroller just left a Power-on Reset.
This condition is indicated by the following Status bits:
POR = 0
BOR = 0
TO = 1
PD = 1
This condition also can occur for MCLR during normal operation and
when the CLRWDT instruction is executed.
After isPOR is called, StatusReset should be called to set the POR
and BOR bits.

Return Value: 1 if the device just left a Power-on Reset
0 otherwise

File Name: ispor.c

isWDTTO
Function: Determine if the cause of a Reset was a Watchdog Timer (WDT) time

out.

Include: reset.h

Prototype: char isWDTTO(void);

Remarks: This function detects if the microcontroller was reset due to the WDT
during normal operation. This condition is indicated by the following
Status bits:
POR = 1
BOR = 1
TO = 0
PD = 1

Return Value: 1 if the Reset was due to the WDT during normal operation
0 otherwise

File Name: iswdtto.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 146 © 2005 Microchip Technology Inc.

isWDTWU
Function: Determine if the cause of a wake-up was the Watchdog Timer (WDT).

Include: reset.h

Prototype: char isWDTWU(void);

Remarks: This function detects if the microcontroller was brought out of Sleep by
the WDT. This condition is indicated by the following Status bits:
POR = 1
BOR = 1
TO = 0
PD = 0

Return Value: 1 if device was brought out of Sleep by the WDT
0 otherwise

File Name: iswdtwu.c

isWU
Function: Detects if the microcontroller was just waken up from Sleep via the

MCLR pin or interrupt.

Include: reset.h

Prototype: char isWU(void);

Remarks: This function detects if the microcontroller was brought out of Sleep by
the MCLR pin or an interrupt. This condition is indicated by the
following Status bits:
POR = 1
BOR = 1
TO = 1
PD = 0

Return Value: 1 if the device was brought out of Sleep by the MCLR pin or an
interrupt

0 otherwise

File Name: iswu.c

StatusReset
Function: Set the POR and BOR bits in the CPUSTA register.

Include: reset.h

Prototype: void StatusReset(void);

Remarks: This function sets the POR and BOR bits in the CPUSTA register. These
bits must be set in software after a Power-on Reset has occurred.

File Name: statrst.c

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 147

4.7 CHARACTER OUTPUT FUNCTIONS

The character output functions provide a central family of functions for processing
output to peripherals, memory buffers and other consumers of character data.

When processing a call to fprintf, printf, sprintf, vfprintf, vprintf or
vsprintf, MPLAB C18 will always process the variable length portion of the argument
list with integer promotions enabled (see the “Integer Promotions” section of the
MPLAB® C18 C Compiler User’s Guide (DS51288) for more information). This allows
the standard library to interface with the compiler cleanly and with consistent behavior
for the formatting of the output as would normally be expected from those functions.

4.7.1 Output Streams

Output is based on the use of a destination stream. A stream can be a peripheral,
memory buffer, or any other consumer of data and is denoted by a pointer to an object
of FILE type. MPLAB C18 defines two streams in the standard library:

_H_USER output via the user-defined output function _user_putc.

_H_USART output via the library output function _usart_putc.

The current version of the library supports only these two output streams. Both streams
are always considered to be open and do not require use of functions such as fopen,
fclose, etc.

The global variables stdout and stderr are defined by the library and have default
value of _H_USART. To change the destination to be _H_USER, assign that value to the
variable. For example, to change standard output to use the user defined output
function:

stdout = _H_USER;

TABLE 4-6: CHARACTER OUTPUT FUNCTIONS

Function Description

fprintf Formatted string output to a stream.

fputs String output to a stream.

printf Formatted string output to stdout.

putc Character output to a stream

puts String output to stdout.

sprintf Formatted string output to a data memory buffer.

vfprintf Formatted string output to a stream with the arguments for processing
the format string supplied via the stdarg facility.

vprintf Formatted string output to stdout with the arguments for processing
the format string supplied via the stdarg facility.

vsprintf Formatted string output to a data memory buffer with the arguments
for processing the format string supplied via the stdarg facility.

_usart_putc Single character output to the USART (USART1 for devices which
have more than one USART).

_user_putc Single character output in an application defined manner.

MPLAB® C18 C Compiler Libraries

DS51297F-page 148 © 2005 Microchip Technology Inc.

4.7.2 Function Descriptions

fprintf
Function: Formatted string output to a stream.

Include: stdio.h

Prototype: int fprintf (FILE *f, const rom char *fmt, ...);

Remarks: The fprintf function formats output, passing the characters to the
specified stream via the putc function. The format string is processed
one character at a time and the characters are output as they appear in
the format string, except for format specifiers. A format specifier is indi-
cated in the format string by a percent sign, %; following that, a
well-formed format specifier has the following components.1 Except for
the conversion operation, all format specifiers are optional:

1. Flag characters (order does not matter), where a flag
character is one of #, -, +, 0 or space.

2. A field width, which is a decimal integer constant value an
asterisk, *.

3. A field precision, which is a period (.), optionally followed
by a decimal integer or an asterisk, *.

4. A size specification, which is one of the specifiers h, H, hh,
j, z, Z, t, T or l.

5. A conversion operation, which is one of c, b, B, d, i, n, o,
p, P, s, S, u, x, X or %.

1Not all components are valid for all conversion operations. Details are
provided in the descriptions of the conversion operators.

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 149

Flag Characters
The alternate form of the result will be presented. For the o conver-

sion, the alternate form is as if the precision were increased such
that the first digit of the result is forced to be a zero. For the x con-
version, a non-zero result will have a 0x prefix added to it. For the X
conversion, a non-zero result will have a 0X prefix added to it. For
the b conversion, a non-zero result will have a 0b prefix added to it.
For the B conversion, a non-zero result will have a 0B prefix added
to it. For other conversions, the flag is ignored.

- The result will be left justified. If this flag is not specified, the result
will be right justified.

+ For a signed conversion, the result will always begin with a + or a -
sign. By default, a sign character is only added to the result if the
result is negative. For other conversions, the flag is ignored.

space For a signed conversion, if the result is non-negative or has no
characters, a space will be prefixed to the result. If the space and +
flags are both specified, the space flag will be ignored. For other
conversions, the flag is ignored.

0 For the integer conversions (d, i, o, u, b, B, x, X), leading zeroes
are prefixed to the result (after any sign and/or base indicators)
such that the result fills the field width. No space padding is per-
formed. If the - flag is also specified, the 0 flag will be ignored. If a
precision is specified, the 0 flag will be ignored. For other
conversions, the flag is ignored.

Field Width
The field width specifies the minimum number of characters for the con-
verted value. If the converted value is shorter than the field width, then
the value is padded to have the number of characters be equal to the
field width. By default, leading spaces are used for padding; the flag
characters are used to alter the pad character and the justification of
the value.
If the field width is an asterisk character, *, an int argument is read to
specify the field width. If the value is negative, it is as if the - flag were
specified, followed by a positive field width.

Field Precision
The field precision specifies the minimum number of digits which will be
present in the converted value for a d, i, o, u, b, B, x or X conversion,
or the maximum number of characters in the converted value for an s
conversion.
If the field width is an asterisk character, *, an int argument is read to
specify the field width. If the value is negative, it is as if the precision
were unspecified.
For the d, i, o, u, b, B, x or X conversion operators, the default preci-
sion is 1. For all other conversion operators the behavior when the
precision is unspecified is described below.

fprintf (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 150 © 2005 Microchip Technology Inc.

Size Specifications
The size specification character applies to the integer conversion spec-
ifiers, d, i, o, u, b, B, x or X , and the pointer conversion specifiers, p
and P. If present for any other conversion operator, it is ignored.
hh For integer conversion specifiers, the argument to be converted is a

signed char or unsigned char argument.2 For an n conver-
sion specifier, the specifier denotes a pointer to a signed char
argument.

h For integer conversion specifiers, the argument to be converted is a
short int or unsigned short int. For an n conversion spec-
ifier, the specifier denotes a pointer to a short int argument. As
a plain int is the same size as a short int for MPLAB C18, this
option has no actual effect and is present for compatibility purposes
only. For pointer conversion specifiers, the argument to be
converted is a 16-bit pointer.

H For integer conversion specifiers, the argument to be converted is a
short long int or unsigned short long int. For an n con-
version specifier, the specifier denotes a pointer to a short long int
argument. For pointer conversion specifiers, the argument to be
converted is a 24-bit pointer.3 For example, when outputting a far
rom char *, the size specifier H should be used (%HS).

j For integer conversion specifiers, the argument to be converted is
an intmax_t or uintmax_t argument. For an n conversion spec-
ifier, the specifier denotes a pointer to an intmax_t argument. For
MPLAB C18, this is equivalent to the l size specifier.

l For integer conversion specifiers, the argument to be converted is a
long int or unsigned long int. For an n conversion specifier,
the specifier denotes a pointer to a long int argument. For
pointer conversion specifiers, the size specifier is ignored.

t For integer conversion specifiers, the argument to be converted is
an ptrdiff_t argument. For an n conversion specifier, the speci-
fier denotes a pointer to a signed integer type corresponding to
ptrdiff_t argument. For MPLAB C18, this is equivalent to the h
size specifier.

T For integer conversion specifiers, the argument to be converted is
an ptrdiffrom_t argument. For an n conversion specifier, the
specifier denotes a pointer to a signed integer type corresponding
to ptrdiffrom_t argument. For MPLAB C18, this is equivalent to
the H size specifier.4

z For integer conversion specifiers, the argument to be converted is
an size_t argument. For an n conversion specifier, the specifier
denotes a pointer to a signed integer type corresponding to size_t
argument. For MPLAB C18, this is equivalent to the h size specifier.

Z For integer conversion specifiers, the argument to be converted is
an sizerom_t argument. For an n conversion specifier, the speci-
fier denotes a pointer to a signed integer type corresponding to
sizerom_t argument. For MPLAB C18, this is equivalent to the H
size specifier.5

2Note that the integer promotions will still apply when the argument is
passed. This specifier causes the argument to be cast back to 8 bits in size
prior to the value being used.

3The H size specifier is an MPLAB C18 specific extension to ANSI C.
4The T size specifier is an MPLAB C18 specific extension to ANSI C.
5The Z size specifier is an MPLAB C18 specific extension to ANSI C.

fprintf (Continued)

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 151

Conversion Operators
c The int argument is converted to an unsigned char value and

the character represented by that value is written.
d, iThe int argument is formatted as signed decimal with the preci-

sion indicating the minimum number of digits to be written. If the
converted value has fewer digits, it is prepended with zeros. If the
converted value is zero and the precision is zero, no characters will
be written.

o The unsigned int argument is converted to unsigned octal with
the precision indicating the minimum number of digits to be written.
If the converted value has fewer digits, it is prepended with leading
zeros. If the converted value is zero and the precision is zero, no
characters will be written.

u The unsigned int argument is formatted as unsigned decimal
with the precision indicating the minimum number of digits to be
written. If the converted value has fewer digits, it is prepended with
zeros. If the converted value is zero and the precision is zero, no
characters will be written.

b The unsigned int argument is formatted as unsigned binary with
the precision indicating the minimum number of digits to be written.
If the converted value has fewer digits, it is prepended with zeros. If
the converted value is zero and the precision is zero, no characters
will be written.6

B The unsigned int argument is formatted as unsigned binary with
the precision indicating the minimum number of digits to be written.
If the converted value has fewer digits, it is prepended with zeros. If
the converted value is zero and the precision is zero, no characters
will be written.7

x The unsigned int argument is formatted as unsigned hexadeci-
mal with the precision indicating the minimum number of digits to be
written. The characters abcdef are used for the representation if
the decimal numbers 10 through 15. If the converted value has
fewer digits, it is prepended with zeros. If the converted value is
zero and the precision is zero, no characters will be written.

X The unsigned int argument is formatted as unsigned hexadeci-
mal with the precision indicating the minimum number of digits to be
written. The characters ABCDEF are used for the representation of
the decimal numbers 10 through 15. If the converted value has
fewer digits, it is prepended with zeros. If the converted value is
zero and the precision is zero, no characters will be written.

s Characters from the data memory array of char argument are writ-
ten until either a terminating '\0' character is seen (the '\0'
character is not written) or the number of characters written is equal
to the specified precision. If the precision is specified to be greater
than the size of the array or is unspecified, the array must contain a
terminating '\0' character.

S Characters from the program memory array of char argument are
written until either a terminating '\0' character is seen (the '\0'
character is not written) or the number of characters written is equal
to the specified precision. If the precision is specified to be greater
than the size of the array or is unspecified, the array must contain a
terminating '\0' character.8 When outputting a far rom char *,
make sure to use the H size specifier (i.e., %HS).

6The b conversion operator is an MPLAB C18 specific extension to ANSI C.
7The B conversion operator is an MPLAB C18 specific extension to ANSI C.
8The S conversion operator is an MPLAB C18 specific extension to ANSI C.

fprintf (Continued)

MPLAB® C18 C Compiler Libraries

DS51297F-page 152 © 2005 Microchip Technology Inc.

p The pointer to void (data or program memory) argument is con-
verted to an equivalent size unsigned integer type and that value is
processed as if the x conversion operator had been specified. If the
H size specifier is present, the pointer is a 24-bit pointer, else it is a
16-bit pointer.

P The pointer to void (data or program memory) argument is con-
verted to an equivalent size unsigned integer type and that value is
processed as if the X conversion operator had been specified. If the
H size specifier is present, the pointer is a 24-bit pointer, else it is a
16-bit pointer.9

n The number of characters written so far shall be stored in the loca-
tion referenced by the argument, which is a pointer to an integer
type in data memory. The size of the integer type is determined by
the size specifier present for the conversion, or a plain 16-bit integer
if no size specifier is present.

% A literal % character is written. The conversion specification shall be
%% only, no flags or other specifiers may be present.

If a conversion specifier is invalid (e.g., a flag character is present for
the %% conversion specifier), the behavior is undefined.

Return Value: fprintf returns EOF if an error occurs, otherwise returns the number
of characters output.

Filename: fprintf.c

Code Example: #include <stdio.h>
void main (void)
{
 far rom char * S = ”Hello, World!”;
 int n = 0x1234;
 fprintf (_H_USART, "test output to USART\n");
 fprintf (_H_USER, "test output to application”
 “defined function\n");
 fprintf (stdout, "hex output: %#x", n);
 fprintf (stderr, “%HS\n”, S);
}

9The P conversion operator is an MPLAB C18 specific extension to ANSI C.

fputs
Function: String output to a stream.

Include: stdio.h

Prototype: int fputs (const rom char *s, FILE *f);

Remarks: fputs outputs a null terminated string to the specified output stream,
one character at a time via putc. A newline character is appended to
the output. The terminating null is not output.

Return Value: fputs returns EOF if an error occurs, otherwise returns a non-negative
value.

Filename: fputs.c

fprintf (Continued)

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 153

printf
Function: Formatted string output to stdout.

Include: stdio.h

Prototype: int printf (const rom char *fmt, ...);

Remarks: The printf function formats output, passing the characters to
stdout via the putc function. The format string is processed as
described for the fprintf function.

Return Value: printf returns EOF if an error occurs, otherwise returns the number of
characters output.

Filename: printf.c

Code Example: #include <stdio.h>
void main (void)
{
 /* will output via stdout (_H_USART by default) */
 printf ("Hello, World!\n");
}

putc
Function: Character output to a stream.

Include: stdio.h

Prototype: int putc (char c, FILE *f);

Remarks: putc outputs a single character to the specified output stream.

Return Value: putc returns EOF if an error occurs, otherwise returns the character
which was output.

Filename: putc.c

puts
Function: String output to stdout.

Include: stdio.h

Prototype: int puts (const rom char *s);

Remarks: puts outputs a null terminated string to stdout one character at a
time via putc. A newline character is appended to the output. The
terminating null is not output.

Return Value: puts returns EOF if an error occurs, otherwise returns a non-negative
value.

Filename: puts.c

Code Example: #include <stdio.h>
void main (void)
{
 puts ("test message");
}

MPLAB® C18 C Compiler Libraries

DS51297F-page 154 © 2005 Microchip Technology Inc.

sprintf
Function: Formatted string output to a data memory buffer.

Include: stdio.h

Prototype: int sprintf (char *buf, const rom char *fmt, ...);

Remarks: The sprintf function formats output, storing the characters to the
destination data memory buffer, buf. The format string, fmt, is
processed as described for the fprintf function.

Return Value: sprintf returns EOF if an error occurs, otherwise the number of
characters output is returned.

Filename: sprintf.c

Code Example: #include <stdio.h>
void main (void)
{
 int i = 0xA12;
 char buf[20];
 sprintf (buf, "%#010x", i);
 /* buf will contain the string "0x00000a12"
}

vfprintf
Function: Formatted string output to a stream with the arguments for processing

the format string supplied via the stdarg facility.

Include: stdio.h

Prototype: int vfprintf (FILE *f, const rom char *fmt,
 va_list ap);

Remarks: The vfprintf function formats output, passing the characters to the
specified output stream, f, via the putc function. The format string,
fmt, is processed as described for the fprintf function except that
the arguments consumed when processing the format string are
retrieved via the stdarg variable length argument facility.

Return Value: vfprintf returns EOF if an error occurs, otherwise the number of
characters output is returned.

Filename: vfprintf.c

vprintf
Function: Formatted string output to stdout with the arguments for processing

the format string supplied via the stdarg facility.

Include: stdio.h

Prototype: int vprintf (const rom char *fmt, va_list ap);

Remarks: The vprintf function formats output, passing the characters to
stdout via the putc function. The format string, fmt, is processed as
described for the fprintf function except that the arguments con-
sumed when processing the format string are retrieved via the stdarg
variable length argument facility.

Return Value: vprintf returns EOF if an error occurs, otherwise the number of
characters output is returned.

Filename: vprintf.c

General Software Library

© 2005 Microchip Technology Inc. DS51297F-page 155

vsprintf
Function: Formatted string output to a data memory buffer with the arguments for

processing the format string supplied via the stdarg facility.

Include: stdio.h

Prototype: int vsprintf (char *buf, const rom char *fmt,
 va_list ap);

Remarks: The vsprintf function formats output, storing the characters to the
destination data memory buffer, buf. The format string, fmt, is
processed as described for the fprintf function except that the
arguments consumed when processing the format string are retrieved
via the stdarg variable-length-argument facility.

Return Value: vsprintf returns EOF if an error occurs, otherwise the number of
characters output is returned.

Filename: vsprintf.c

_usart_putc

Function: Single character output to the USART (USART1 for devices which have
more than one USART).

Include: stdio.h

Prototype: int _usart_putc (char c);

Remarks: _usart_putc is the library output function invoked by putc when
_H_USART is the destination stream. The character to be output is
assigned to the transmit register (TXREG) when the USART is ready for
output (TRMT is set).
If the USART is not enabled when _usart_putc is called (TXSTA bit
TXEN is clear), the USART will be enabled (TXEN and SPEN will be set)
and set to maximum baud rate output (SPBRG will be assigned a value
of zero). This configuration allows the character output library functions
to be used with the MPLAB IDE support for USART debug output
without explicit peripheral configuration.

Return Value: _usart_putc returns the value of the character which was output.

Filename: _usart_putc.c

_user_putc

Function: Single character output in an application defined manner.

Include: stdio.h

Prototype: int _user_putc (char c);

Remarks: _user_putc is an application defined function. It will be called by the
character output functions for each character to be output when the
destination stream is _H_USER.

Return Value: _user_putc returns the value of the character which was output.

MPLAB® C18 C Compiler Libraries

DS51297F-page 156 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 157

Chapter 5. Math Libraries

5.1 INTRODUCTION

This chapter documents math library functions. It includes two sections:

• 32-Bit Floating Point Math Library
• The C Standard Library Math Functions

5.2 32-BIT FLOATING POINT MATH LIBRARY

The basic floating point operations—add, subtract, multiply, divide and conversions
between floats and integers—comply with the IEEE 754 standard for single precision
floats with two exceptions. The exceptions will be discussed under Subnormals
(Section 5.2.1.2 “Subnormals”) and Rounding (Section 5.2.2 “Rounding”). The
extended mode and traditional mode use the same float representations and the
results of float operations are the same.

The IEEE standard for binary floating-point arithmetic published in 1985 became
known officially as ANSI/IEEE Std 754-1985 [IEEE85]. The standard has three
important requirements:

• consistent representation of floating-point numbers by all machines adopting the
standard;

• correctly rounded floating-point operations, using various rounding modes;
• consistent treatment of exceptional situations such as division by zero.

5.2.1 Floating-Point Representation

The C18 floating point number representation follows the single precision IEEE 754
standard. A floating-point number consists of four parts:

1. A sign
2. A significand
3. A base
4. An exponent

These components are of the form

x = ±d0.d1.d2.d3 · · · d23 × 2E

where ± is the sign, d0.d1.d2.d3 · · · d23 is the significand, and E is the exponent to which
the base 2 is raised. Each di is a digit (0 or 1). The exponent E is an integer in the range
Emin to Emax where Emin = -126 and Emax = 127.

Single-format numbers use a 32-bit word organized as a 1-bit sign, an 8-bit biased
exponent e = E + 127, and a 23-bit fraction, which is the fractional part of the
significand.

The most-significant bit of the significand (d0) is not stored. This is possible because its
value can be inferred from the exponent value: if the biased exponent value is 0, then
d0 = 0, otherwise d0 = 1. Using this convention allows 24 bits of precision to be stored
in 23 physical bits.

MPLAB® C18 C Compiler Libraries

DS51297F-page 158 © 2005 Microchip Technology Inc.

In the C18 implementation, the d0 = 0 numbers are not used (see Section 5.2.1.2
“Subnormals”).

5.2.1.1 NORMALS

All the lines in Table 5-1 except the first and last refer to normalized numbers. The
exponent bit string e7e6e5. . . e0 uses a biased representation; the bit string is stored
as the binary representation of E+127, where E is the unbiased exponent. The number
127, which is added to the exponent E, is called the exponent bias. For example, the
number 1=(1.000. . . 0)2 20 is stored as

Here the exponent bit string is the binary representation for 0+127 and the fraction bit
string is the binary representation for 0 (the fractional part of 1.0).

The range of exponent field bit strings for normalized numbers is 00000001 to 11111110
(the decimal numbers 1 through 254), representing actual exponents from Emin =-126
to Emax = 127.

The smallest positive, non-zero normalized number that can be stored is represented by

and this is denoted by

Nmin =(1.000… 0)2 x 2-126 = 2-126 ˜ 1.2 x 1038

The constant Nmin is accessible to C programmers using the manifest constant
FLT_MIN defined in <float.h>.

The largest normalized number (equivalently, the largest finite number) is represented by

and this is denoted by

Nmax =(1.111. . . 1)2 x 2127=(2 - 2-23) x 2127 ˜ 2128 ˜ 3.4 x 1038

The constant Nmax is accessible to C programmers using the manifest constant
FLT_MAX defined in <float.h>.

Sign 8-bit biased exponent E 23-bit unsigned fraction f

± e7e6e5e4e3e2e1e0 d0d1d2d3 · · · d23

0 01111111 00000000000000000000000

TABLE 5-1: IEEE-754 SINGLE FORMAT

Biased Exponent Number Represented

(00000000)2 = (00)16 = (0)10 ± (0.d1d2d3. . . d23)2 X 2-126

(00000001)2 = (01)16 = (1)10 ± (1.d1d2d3. . . d23)2 X 2-126

(00000010)2 = (02)16 = (2)10 ± (1.d1d2d3. . . d23)2 X 2-125

(00000011)2 = (03)16 = (3)10 ± (1.d1d2d3. . . d23)2 X 2-124

↓ ↓
(01111110)2 = (7E)16 = (126)10 ± (1.d1d2d3. . .d23)2 X 2-1

(01111111)2 = (7F)16 = (127)10 ± (1.d1d2d3. . .d23)2 X 20

(10000000)2 = (80)16 = (128)10 ± (1.d1d2d3. . .d23)2 X 21

↓ ↓
(11111100)2 = (FC)16 = (252)10 ± (1.d1d2d3. . .d23)2 X 2125

(11111101)2 = (FD)16 = (253)10 ± (1.d1d2d3. . .d23)2 X 2126

(11111110)2 = (FE)16 = (254)10 ± (1.d1d2d3. . .d23)2 X 2127

(11111111)2 = (FF)16 = (255)10 ±∞ if d1. . . d 23 = 0
 NaN if d1. . .d23 ≠ 0

0 00000001 00000000000000000000000

0 11111110 11111111111111111111111

Math Libraries

© 2005 Microchip Technology Inc. DS51297F-page 159

5.2.1.2 SUBNORMALS

The smallest normalized number that can be represented is 2-126. The IEEE 754
standard uses the combination of a zero biased exponent e and a nonzero fraction f to
represent smaller numbers called subnormal numbers. The structure of subnormal
numbers is shown on line 1 of Table 5-1. In the C18 float implementation, subnormal
numbers are always converted to signed zero.

IEEE 754 uses two different zero representations: + 0 and -0. The +0 is represented by
all zero bits. The -0 is represented by all zero bits except for the sign bit.

If the result of a float operation is less than the smallest normalized number, the result
is set to a signed zero before it is returned. Since, in the C18 implementation, no float
operation can create a subnormal, a subnormal will appear only if it is constructed
explicitly as a literal, or is generated in some way other than by standard float opera-
tions. If a subnormal value is used in a float operation, it is converted automatically to
a signed zero before it is used in the operation.

5.2.1.3 NaNs

In addition to supporting signed infinities, signed zeroes and signed non-zero finite
numbers, the IEEE floating-point format specifies an encoding for error patterns. These
patterns are not numbers but a recording of the fact that an invalid operation has been
attempted. Any such pattern is an error indicator, not a floating-point number and so is
referred to as Not a Number, or NaN. Invalid operations are defined by the IEEE
standard to include:

• Magnitude subtraction of infinities, such as (+∞) + (-∞)
• Multiplication of a zero by an infinity, such as (0) x (+∞)
• Division of a zero or infinity by zero or infinity, respectively, such as (+∞)/(-∞) or

(+∞)/(+∞)

NaNs have a biased exponent of 255, which is also the exponent used to encode infin-
ities. The interpretation when the biased exponent is 255 is: if the fraction is zero, the
encoding represents an infinity; if the fraction is not zero, the encoding represents NaN
(not a number). Ignoring the sign bit, which the standard does not interpret for NaNs,
there are therefore 223 – 1 possible NaNs. The C18 implementation returns the NaN
pattern 7FFF FFFF16 in response to an invalid operation. That is, the sign bit is 0, the
exponent is 255, and the fraction bits are all 1s.

5.2.2 Rounding

The IEEE-754 standard requires that operations be correctly rounded. The standard
defines the correctly rounded value of x, which is denoted by round(x), as follows: If x
is a floating-point number, then round(x) = x. Otherwise, the correctly-rounded value
depends on which of four rounding modes is in effect. The C18 float implementation
uses the Round to Nearest mode with a slight modification to the IEEE 754 standard.
The threshold for rounding up is about 0.502 instead of exactly 0.5. This gives a slight
bias toward rounding toward zero. This modification results in a significant savings in
code space and execution time with virtually no consequences for real-world
calculations.

MPLAB® C18 C Compiler Libraries

DS51297F-page 160 © 2005 Microchip Technology Inc.

5.3 THE C STANDARD LIBRARY MATH FUNCTIONS

All the math functions of the standard C Library will return NaN if one or more of its
arguments:

• is NaN.
• is outside the range of values for which the function has a defined real value, for

example the square root of a negative number.

Table 5-2 lists the math functions.

TABLE 5-2: MATH LIBRARY FUNCTIONS

Function Description

acos Compute the inverse cosine (arccosine).

asin Compute the inverse sine (arcsine).

atan Compute the inverse tangent (arctangent).

atan2 Compute the inverse tangent (arctangent) of a ratio.

ceil Compute the ceiling (least integer).

cos Compute the cosine.

cosh Compute the hyperbolic cosine.

exp Compute the exponential ex.

fabs Compute the absolute value.

floor Compute the floor (greatest integer).

fmod Compute the remainder.

frexp Split into fraction and exponent.

ieeetomchp Convert an IEEE-754 format 32-bit floating point value into the
Microchip 32-bit floating point format.

ldexp Load exponent – compute x * 2n.

log Compute the natural logarithm.

log10 Compute the common (base 10) logarithm.

mchptoieee Convert a Microchip format 32-bit floating point value into the
IEEE-754 32-bit floating point format.

modf Compute the modulus.

pow Compute the exponential xy.

sin Compute the sine.

sinh Compute the hyperbolic sine.

sqrt Compute the square root.

tan Compute the tangent.

tanh Compute the hyperbolic tangent.

Math Libraries

© 2005 Microchip Technology Inc. DS51297F-page 161

5.3.1 Function Descriptions

acos
Function: Compute the inverse cosine (arccosine)

Include: math.h

Prototype: float acos(float x);

Remarks: This function computes the inverse cosine (arccosine) of the argument
x, which must be between –1 and +1. Arguments outside the permitted
range produce domain errors and the result is NaN.

Return Value: The returned value is the arccosine in radians, and is between 0 and π.

File Name: acos.c

asin
Function: Compute the inverse sine (arcsine).

Include: math.h

Prototype: float asin(float x);

Remarks: This function computes the inverse sine (arcsine) of the argument x,
which must be between –1 and +1. Arguments outside the permitted
range produce domain errors and the result is NaN.

Return Value: The returned value is the arcsine in radians, and is between –π/2 and
π/2.

File Name: asin.c

atan
Function: Compute the inverse tangent (arctangent).

Include: math.h

Prototype: float atan(float x);

Remarks: This function computes the inverse tangent (arctangent) of the
argument x. If x is a NaN, a domain error occurs and the value
returned is NaN.

Return Value: The returned value is in radians, and between –π/2 and π/2.

File Name: atan.c

atan2
Function Compute the inverse tangent (arctangent) of a ratio.

Include: math.h

Prototype: float atan2(float y, float x);

Remarks: This function computes the inverse tangent (arctangent) of y/x. If x or
y is NaN, a domain occurs and the value returned is NaN. If x is a NaN,
or if x = y = 0, or if x = y = ∞, a domain error occurs and the value
returned is NaN.

Return Value: The returned value is in radians, and between – π and π.

File Name: atan2.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 162 © 2005 Microchip Technology Inc.

ceil
Function: Compute the ceiling (least integer).

Include: math.h

Prototype: float ceil (float x);

Remarks: None.

Return Value: The smallest integer greater than or equal to x.

File Name: ceil.c

cos
Function: Compute the cosine.

Include: math.h

Prototype: float cos (float x);

Remarks: Computes the cosine of x (in radians). A domain error results from an
argument that is infinite or NaN. Both cases return NaN.

Return Value: The cosine of argument x.

File Name: cos.c

cosh
Function: Compute the hyperbolic cosine.

Include: math.h

Prototype: float cosh (float x);

Remarks: None.

Return Value: The hyperbolic cosine of argument x.

File Name: cosh.c

exp
Function: Compute the exponential ex.

Include: math.h

Prototype: float exp (float x);

Remarks: A range error occurs if the magnitude of x is too large. The range of this
function is limited to values for the exponent of between approximately
-103.2789 and 88.722283. The minimum value of the result is 2-149 and
the maximum is 2127.

Return Value: The value of the exponential ex.

File Name: exp.c

fabs
Function: Compute the absolute value.

Include: math.h

Prototype: float fabs(float x);

Remarks: For floating point arguments that are zeroes and infinities, the return
value is the argument with the sign bit cleared.

Return Value: The absolute value of x.

File Name: fabs.c

Math Libraries

© 2005 Microchip Technology Inc. DS51297F-page 163

floor
Function: Compute the floor (greatest integer).

Include: math.h

Prototype: float floor(float x);

Remarks: None.

Return Value: The largest integer less than or equal to x.

File Name: floor.c

fmod
Function: Compute the remainder.

Include: math.h

Prototype: float fmod(float x, float y);

Remarks: None.

Return Value: The remainder for x modulo y.

File Name: fmod.c

frexp
Function: Split into fraction and exponent.

Include: math.h

Prototype: float frexp(float x, int *pexp);

Remarks: Separates the argument x into two parts that fit this formula:
x = frexp(x, *pexp) x 2*pexp

The integer value, which is stored at location pexp, is chosen so that
the fractional portion of the result is between ½ and 1.

Return Value: Fractional result that satisfies the conditions listed above.

File Name: frexp.c

ieeetomchp
Function: Convert an IEEE-754 format 32-bit floating point value into the

Microchip 32-bit floating point format.

Include: math.h

Prototype: unsigned long ieeetomchp(float v);

Remarks: This function adjusts the sign bit of the floating point representation to
be located as required by the Microchip format:

eb f0 f1 f2

IEEE-754 32-bit seee eeee exxx xxxx xxxx xxxx xxxx xxxx

Microchip 32-bit eeee eeee sxxx xxxx xxxx xxxx xxxx xxxx

 s=sign bit e=exponent x=significand

Return Value: The converted 32-bit value.

File Name: ieeetomchp.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 164 © 2005 Microchip Technology Inc.

ldexp
Function: Load exponent – compute x * 2n.

Include: math.h

Prototype: float ldexp(float x, int n);

Remarks: None.

Return Value: Returns the value of x * 2n.

File Name: ldexp.c

log
Function: Compute the natural logarithm.

Include: math.h

Prototype: float log(float x);

Remarks: A domain error occurs if the argument is not in the interval [0, +∞].

Return Value: Natural logarithm of x.

File Name: log.c

log10
Function: Compute the common (base 10) logarithm.

Include: math.h

Prototype: float log10(float x);

Remarks: A domain error occurs if the argument is not in the interval [0, +∞].

Return Value: log10x.

File Name: log10.c

mchptoieee
Function: Convert a Microchip format 32-bit floating point value into the IEEE-754

32-bit floating point format.

Include: math.h

Prototype: float ieeetomchp(unsigned long v);

Remarks: This function adjusts the sign bit of the floating point representation to
be located as required by the IEEE format:

eb f0 f1 f2

IEEE-754 32-bit seee eeee exxx xxxx xxxx xxxx xxxx xxxx

Microchip 32-bit eeee eeee sxxx xxxx xxxx xxxx xxxx xxxx

 s=sign bit e=exponent x=significand

Return Value: The converted floating point value.

File Name: mchptoieee.c

Math Libraries

© 2005 Microchip Technology Inc. DS51297F-page 165

modf
Function: Compute the modulus.

Include: math.h

Prototype: float modf(float x, float *ipart);

Remarks: This function separates the argument x into integer and fractional parts.
The fractional part is returned, and the integer part is stored at location
ipart. If the argument is NaN, the results for both the fractional and
integer part will be NaN as well.

Return Value: Fractional portion of x.

File Name: modf.c

pow
Function: Compute the exponential xy.

Include: math.h

Prototype: float pow(float x, float y);

Remarks: Domain errors occur if x is finite and negative, and y is finite and not an
integer; also if x is zero and y is less than or equal to zero. A range
error occurs if xy is too large or too small to be represented. In such a
case, a correctly signed infinity or zero is returned and a range error is
signaled.

Return Value: xy.

File Name: pow.c

sin
Function: Compute the sine.

Include: math.h

Prototype: float sin(float x);

Remarks: Computes the sine of x (in radians). A domain error results from an
argument that is infinite or NaN. Both cases return NaN.

Return Value: The sine of x.

File Name: sin.c

sinh
Function: Compute the hyperbolic sine.

Include: math.h

Prototype: float sinh(float x);

Remarks: None.

Return Value: The hyperbolic sine of argument x.

File Name: sinh.c

MPLAB® C18 C Compiler Libraries

DS51297F-page 166 © 2005 Microchip Technology Inc.

sqrt
Function: Compute the square root.

Include: math.h

Prototype: float sqrt(float x);

Remarks: A domain error occurs if the argument x is strictly negative. The princi-
pal square root exists and is computable for every non-negative floating
point number x.

Return Value: The square root of x.

File Name: sqrt.c

tan
Function: Compute the tangent.

Include: math.h

Prototype: float tan(float x);

Remarks: Computes the tangent of x (in radians). A domain error occurs if the
argument is infinite or NaN. Both cases return NaN.

Return Value: The tangent of x.

File Name: tan.c

tanh
Function: Compute the hyperbolic tangent.

Include: math.h

Prototype: float tanh(float x);

Remarks: If the argument is NaN, the return value is NaN.

Return Value: The hyperbolic tangent of x.

File Name: tanh.c

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 167

Glossary

A
Absolute Section
A section with a fixed address that cannot be changed by the linker.

Access Memory
Special General Purpose Registers (GPR) on the PIC18 PICmicro microcontrollers that
allow access regardless of the setting of the Bank Select Register (BSR).

Address
The code that identifies where a piece of information is stored in memory.

Anonymous Structure
An unnamed object.

ANSI
American National Standards Institute

Assembler
A language tool that translates assembly source code into machine code.

Assembly
A symbolic language that describes the binary machine code in a readable form.

Assigned Section
A section that has been assigned to a target memory block in the linker command file.

Asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

B
Binary

The base two numbering system that uses the digits 0-1. The right-most digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

C
Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the arithmetic logic unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.

Compiler

A program that translates a source file written in a high-level language into machine
code.

MPLAB® C18 C Compiler Libraries

DS51297F-page 168 © 2005 Microchip Technology Inc.

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

CPU

Central Processing Unit

E
Endianness

The ordering of bytes in a multi-byte object.

Error File

A file containing the diagnostics generated by the MPLAB C18 compiler.

Extended Mode

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.

F
Fatal Error

An error that will halt compilation immediately. No further messages will be produced.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables.

Free-standing

An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h> and
<stdint.h>.

H
Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f).
The digits A-F represent decimal values of 10 to 15. The right-most digit counts ones,
the next counts multiples of 16, then 162 = 256, etc.

High-level Language

A language for writing programs that is further removed from the processor than
assembly.

I
ICD

In-Circuit Debugger

ICE

In-Circuit Emulator

IDE

Integrated Development Environment

Glossary

© 2005 Microchip Technology Inc. DS51297F-page 169

IEEE

Institute of Electrical and Electronics Engineers

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an ISR so that the event may be processed. Upon completion of the ISR,
normal execution of the application resumes.

Interrupt Service Routine

A function that handles an interrupt.

ISO

International Organization for Standardization

ISR

Interrupt Service Routine

L
Latency

The time between when an event occurs and the response to it.

Librarian

A program that creates and manipulates libraries.

Library

A collection of relocatable object modules.

Linker

A program that combines object files and libraries to create executable code.

Little Endian

Within a given object, the Least Significant Byte is stored at lower addresses.

M
Memory Model

A description that specifies the size of pointers that point to program memory.

Microcontroller

A highly integrated chip that contains a CPU, RAM, some form of ROM, I/O ports and
timers.

MPASM Assembler

Microchip Technology’s relocatable macro assembler for PICmicro microcontroller
families.

MPLIB Object Librarian

Microchip Technology’s librarian for PICmicro microcontroller families.

MPLINK Object Linker

Microchip Technology’s linker for PICmicro microcontroller families.

N
Non-extended Mode

In Non-extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

MPLAB® C18 C Compiler Libraries

DS51297F-page 170 © 2005 Microchip Technology Inc.

O
Object File

A file containing object code. It may be immediately executable or it may require linking
with other object code files (e.g., libraries) to produce a complete executable program.

Object Code

The machine code generated by an assembler or compiler.

Octal

The base 8 number system that only uses the digits 0-7. The right-most digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

P
Pragma

A directive that has meaning to a specific compiler.

R
RAM

Random Access Memory

Random Access Memory

A memory device in which information can be accessed in any order.

Read Only Memory

Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

ROM

Read Only Memory

Recursive

Self-referential (e.g., a function that calls itself).

Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relocatable

An object whose address has not been assigned to a fixed memory location.

Runtime Model

Set of assumptions under which the compiler operates.

S
Section

A portion of an application located at a specific address of memory.

Section Attribute

A characteristic ascribed to a section (e.g., an access section).

Special Function Register

Registers that control I/O processor functions, I/O status, timers or other modes or
peripherals.

Glossary

© 2005 Microchip Technology Inc. DS51297F-page 171

Storage Class

Determines the lifetime of the memory associated with the identified object.

Storage Qualifier

Indicates special properties of the objects being declared (e.g., const).

V
Vector

The memory locations that an application will jump to when either a Reset or interrupt
occurs.

MPLAB® C18 C Compiler Libraries

DS51297F-page 172 © 2005 Microchip Technology Inc.

NOTES:

MPLAB® C18 C COMPILER
LIBRARIES

© 2005 Microchip Technology Inc. DS51297F-page 173

Index

Symbols
_usart_putc .. 155
_user_putc ... 155

A
A/D Converter .. 9

Busy.. 10
Close... 10
Convert ... 10
Example of Use .. 16
Open ..10, 12, 14
Read ... 15
Set Channel .. 16

Absolute Value... 162
AckI2C ... 22
acos ... 161
Alphabetical Character... 118
Alphanumeric Character .. 118
ANSI... 5
Arccosine ... 161
Arcsine ... 161
Arctangent.. 161
asin .. 161
Asynchronous Mode .. 69
atan .. 161
atan2 .. 161
atob .. 122
atof ... 122
atoi ... 123
atol ... 123

B
baudUSART... 73
Brown-out Reset .. 144
btoa .. 123
build.bat ... 6
BusyADC ... 10
BusyUSART... 67
BusyXLCD ... 77

C
c018.o .. 5
c018_e.o .. 5
c018i.o ... 5
c018i_e.o ... 5
c018iz.o.. 5
c018iz_e.o.. 5
CAN2510, External .. 82

Bit Modify .. 83
Byte Read ... 84
Byte Write ... 84
Data Read... 84

Data Ready ... 85
Disable .. 86
Enable... 86
Error State... 87
Initialize ... 87
Interrupt Enable .. 91
Interrupt Status ... 92
Load Extended to Buffer 93
Load Extended to RTR 94
Load Standard to Buffer.................................... 92
Load Standard to RTR 94
Read Mode ... 95
Read Status .. 95
Reset... 96
Send Buffer ... 96
Sequential Read ... 96
Sequential Write.. 97
Set Buffer Priority.. 97
Set Message Filter to Extended........................ 99
Set Message Filter to Standard 98
Set Mode... 98
Set Single Filter to Extended 100
Set Single Filter to Standard 100
Set Single Mask to Extended.......................... 101
Set Single Mask to Standard 101
Write Extended Message................................ 104
Write Standard Message 102, 103

CAN2510BitModify... 83
CAN2510ByteRead.. 84
CAN2510ByteWrite .. 84
CAN2510DataRead ... 84
CAN2510DataReady.. 85
CAN2510Disable.. 86
CAN2510Enable .. 86
CAN2510ErrorState ... 87
CAN2510Init... 87
CAN2510InterruptEnable ... 91
CAN2510InterruptStatus .. 92
CAN2510LoadBufferStd... 92
CAN2510LoadBufferXtd... 93
CAN2510LoadRTRStd... 94
CAN2510LoadRTRXtd... 94
CAN2510ReadMode .. 95
CAN2510ReadStatus... 95
CAN2510Reset .. 96
CAN2510SendBuffer.. 96
CAN2510SequentialRead .. 96
CAN2510SequentialWrite .. 97
CAN2510SetBufferPriority 97
CAN2510SetMode ... 98
CAN2510SetMsgFilterStd .. 98

MPLAB® C18 C Compiler Libraries

DS51297F-page 174 © 2005 Microchip Technology Inc.

CAN2510SetMsgFilterXtd .. 99
CAN2510SetSingleFilterStd................................... 100
CAN2510SetSingleFilterXtd................................... 100
CAN2510SetSingleMaskStd 101
CAN2510SetSingleMaskXtd 101
CAN2510WriteStd.. 102, 103
CAN2510WriteXtd.. 104
Capture .. 18

Close... 17
Example of Use... 20
Open ... 18
Read ... 19

ceil .. 162
Ceiling .. 162
Character Classification

Alphabetic ... 118
Alphanumeric .. 118
Control .. 118
Decimal ... 119
Graphical... 119
Hexadecimal ... 121
Lowercase Alphabetic 119
Printable.. 120
Punctuation ... 120
Uppercase Alphabetic 121
White Space.. 120

Character Classification Functions......................... 117
Character Output Functions 147

Character Output 153, 155
Formatted Output148, 153, 154, 155
Unformatted Output 152, 153

ClearCSSWPI... 112
clib.lib ... 6
clib_e.lib ... 6
Clock_test .. 106
CloseADC .. 10
CloseCapture ... 17
CloseECapture... 17
CloseI2C .. 22
CloseMwire... 37
ClosePORTB.. 35
ClosePWM ... 44
CloseRBxINT.. 35
CloseSPI .. 49
CloseTimer... 57
CloseUSART.. 67
Common Logarithm.. 164
Control Character ... 118
ConvertADC ... 10
cos.. 162
cosh.. 162
Cosine .. 162
Customer Notification Service.................................... 4
Customer Support .. 4

D
Data Conversion Functions.................................... 122

Byte to String .. 123
Convert Character to Lowercase 125
Convert Character to Uppercase 125
Integer to String .. 124

Long to String.. 124
String to Byte... 122
String to Float.. 122
String to Integer... 123
String to Long.. 123
Unsigned Long to String.................................. 126

Data Initialization .. 5
DataRdyMwire.. 38
DataRdySPI.. 49
DataRdyUSART ... 68
Delay .. 142

1 Tcy ... 142
1,000 Tcy Multiples ... 143
10 Tcy Multiples .. 142
10,000 Tcy Multiples 143
100 Tcy Multiples .. 142

Delay100TCYx ... 142
Delay10KTCYx... 143
Delay10TCYx ... 142
Delay1KTCYx... 143
Delay1TCY ... 142
Directories

h .. 75, 105, 111
lib... 5, 6
pmc ... 9, 75
src ... 5
start-up .. 6

DisablePullups.. 35
Documentation Conventions 2

E
ECapture

Close ... 17
Open ... 18

EE Memory Device Interface Functions 29
EEAckPolling.. 29
EEByteWrite ... 29
EECurrentAddRead.. 30
EEPageWrite.. 31
EERandomRead .. 32
EESequentialRead ... 33
EnablePullups .. 35
Examples

A/D Converter ... 16
Capture ... 20
I2C, Hardware ... 34
I2C, Software... 109
LCD ... 81
Microwire... 42
SPI, Hardware... 54
SPI, Software .. 113
Timers ... 65
UART, Software .. 116
USART, Hardware .. 74

exp.. 162
Exponent .. 157
Exponent Bias .. 158
Exponential... 162, 165

F
fabs... 162

Index

© 2005 Microchip Technology Inc. DS51297F-page 175

float.h ... 158
Floating Point ... 157

Libraries .. 157
floor .. 163
FLT_MAX... 158
FLT_MIN .. 158
fmod ... 163
fprintf .. 148
fputs ... 152
frexp ... 163

G
getcI2C... 23
getcMwire... 38
getcSPI .. 49
getcUART .. 115
getcUSART .. 68
getsI2C... 23
getsMwire... 38
getsSPI .. 50
getsUART .. 115
getsUSART .. 68
Graphical Character ... 119

H
h directory ...75, 105, 111
Hyperbolic Cosine.. 162
Hyperbolic Sine.. 165
Hyperbolic Tangent .. 166

I
I/O Port Functions See Port B.................................. 34
I2C Software Macros.. 105
I2C, Hardware .. 21

Acknowledge .. 22
Close... 22
EEPROM Acknowledge Polling 29
EEPROM Byte Write... 29
EEPROM Current Address Read...................... 30
EEPROM Page Write 31
EEPROM Random Read 32
EEPROM Sequential Read............................... 33
Example of Use .. 34
Get Character ... 23
Get String.. 23
Idle .. 24
No Acknowledge... 24
Open ... 25
Put Character.. 25
Put String .. 26
Read ... 26
Restart .. 27
Start .. 27
Stop .. 28
Write ... 28

I2C, Software.. 105
Acknowledge .. 106
Clock Test ... 106
Example of Use .. 109
Get Character ... 106
Get String.. 106

No Acknowledge 106, 107
Put Character.. 107
Put String .. 107
Read ... 107
Restart .. 107
Start .. 108
Stop... 108
Write.. 108

IdleI2C.. 24
IEEE 754 .. 157
IEEE-754.. 163, 164
ieeetomchp... 163
Independent ... 6
Initialized Data.. 5
Input Capture ... 17
Interrupt Service Routine 169
interrupt service routine.. 169
Inverse Cosine ... 161
Inverse Sine ... 161
Inverse Tangent ... 161
isalnum... 118
isalpha.. 118
isBOR... 144
iscntrl.. 118
isdigit .. 119
isgraph ... 119
islower .. 119
isLVD.. 144
isMCLR .. 145
isPOR... 145
isprint.. 120
ispunct.. 120
isspace ... 120
isupper ... 121
isWDTTO ... 145
isWDTWU .. 146
isWU... 146
isxdigit .. 121
itoa ... 124

L
LCD

External Delays... 77
External Macros .. 76

LCD, External ... 75
Busy .. 77
Example of Use... 81
Open ... 77
Put Character.. 77, 80
Put ROM String... 78
Put String .. 78
Read Address ... 78
Read Data... 79
Set Character Generator Address 79
Set Display Data Address 79
Write Command .. 80
Write Data ... 80

ldexp... 164
lib directory... 5, 6
Libraries

Processor-Independent....................................... 6

MPLAB® C18 C Compiler Libraries

DS51297F-page 176 © 2005 Microchip Technology Inc.

Processor-Specific .. 7
Rebuilding ... 5–7
Source Code ... 6–7

Library Overview .. 5
Little Endian ... 169
Load Exponent ... 164
log .. 164
log10 .. 164
Lowercase Characters119, 125, 135
ltoa ... 124

M
main ... 5
makeclib.bat ... 6
makeplib.bat ... 7
Math Libraries .. 157

Absolute Value.. 162
Ceiling ... 162
Common Logarithm .. 164
Cosine... 162
Exponential ... 162
Floor .. 163
Fraction and Exponent 163
Hyperbolic Cosine... 162
Hyperbolic Sine... 165
Hyperbolic Tangent ... 166
IEEE-754 Conversion 163, 164
Inverse Cosine .. 161
Inverse Sine .. 161
Inverse Tangent .. 161
Load Exponent .. 164
Modulus .. 165
Natural Logarithm ... 164
Power.. 165
Remainder .. 163
Sine... 165
Square Root .. 166
Tangent ... 166

mchptoieee... 164
MCLR ... 145
memchr .. 128
memcmp .. 128
memcmppgm.. 128
memcmppgm2ram ... 128
memcmpram2pgm ... 128
memcpy.. 129
memcpypgm2ram... 129
memmove .. 130
memmovepgm2ram ... 130
Memory Manipulation Functions 126

Compare ... 128
Copy.. 129
Move ... 130
Search... 128
Set... 131

memset .. 131
Microchip Web Site .. 3
Microwire .. 37

Close... 37
Data Ready ... 38
Example of Use... 42

Get Character.. 38
Get String .. 38
Open ... 39
Put Character .. 39
Read.. 40
Write.. 41

modf ... 165
Modulus.. 165
MPASM Assembler .. 6, 7
MPLIB Librarian.. 6, 7

N
NaNs .. 159
Natural Logarithm... 164
Normalized Numbers.. 158
Normals .. 158
NotAckI2C .. 24

O
OpenADC ... 10, 12, 14
OpenCapture.. 18
OpenECapture ... 18
OpenI2C ... 25
OpenMwire ... 39
OpenPORTB .. 36
OpenPWM.. 45
OpenRBxINT .. 36
OpenSPI... 50
OpenSWSPI ... 112
OpenTimer ... 58–62
OpenUART... 115
OpenUSART .. 69
OpenXLCD ... 77

P
Peripheral Libraries .. 7
pmc directory.. 9, 75
PORTB

Close ... 35
Disable Interrupts .. 35
Disable Pullups ... 35
Enable Interrupts... 36
Enable Pullups .. 35
Open ... 36

pow... 165
printf ... 153
Pulse-Width Modulation Functions........................... 44
putc... 153
putcI2C ... 25
putcMwire ... 39
putcSPI... 51
putcSWSPI ... 112
putcUART... 115
putcUSART .. 70
putcXLCD ... 77, 80
putrsUSART ... 70
putrsXLCD.. 78
puts... 153
putsI2C ... 26
putsSPI... 51
putsUART... 115

Index

© 2005 Microchip Technology Inc. DS51297F-page 177

putsUSART .. 70
putsXLCD... 78
PWM .. 44

Close... 44
Open ... 45
Set Duty Cycle .. 46
Set ECCP Output.. 47

R
rand.. 124
ReadADC... 15
ReadAddrXLCD ... 78
ReadCapture.. 19
ReadDataXLCD ... 79
ReadI2C... 26
ReadMwire... 40
ReadSPI... 52
ReadTimer ... 63
ReadUART... 116
ReadUSART .. 71
Rebuilding Libraries

Processor-independent....................................... 6
Processor-specific .. 7
Start-up Code ... 6

References... 2
Remainder ... 163
Reset Functions ... 144

Brown-out ... 144
Low Voltage Detect... 144
Master Clear ... 145
Power-on .. 145
Status.. 146
Wake-up ... 146
Watchdog Timer Time-out 145
Watchdog Timer Wake-up 146

RestartI2C.. 27
Rounding...157, 159
Rounding Modes.. 157

S
SetCGRamAddr ... 79
SetChanADC ... 16
SetCSSWSPI ... 113
SetDCPWM.. 46
SetDDRamAddr ... 79
SetOutputPWM .. 47
SFR Definitions .. 7
Significand ... 157
sin .. 165
Sine.. 165
sinh .. 165
Sleep.. 146
Specific .. 7
SPI, Hardware.. 48

Close... 49
Data Ready... 49
Example of Use .. 54
Get Character ... 49
Get String.. 50
Open ... 50
Put Character.. 51

Put String .. 51
Read ... 52
Write.. 53

SPI, Software ... 111
Clear Chip Select .. 112
Example of Use... 113
Macros .. 111
Open ... 112
Put Character.. 112
Set Chip Select ... 113
Write.. 113

sprintf ... 154
sqrt ... 166
Square Root ... 166
srand .. 125
src directory.. 5
SSP .. 21, 22
Stack, Software .. 5
Standard C Library ... 6
StartI2C .. 27
Start-up Code... 5
start-up directory .. 6
StatusReset.. 146
StopI2C .. 28
strcat .. 131
strcatpgm2ram ... 131
strchr .. 132
strcmp .. 132
strcmppgm2ram ... 132
strcpy.. 133
strcpypgm2ram .. 133
strcspn.. 134
String Manipulation Functions................................ 126

Append.. 131, 135
Compare ... 132, 136
Convert to Lowercase 135
Convert to Uppercase 141
Copy.. 133, 137
Length ... 134
Search..132, 138, 140
Tokenize ... 140

strlen .. 134
strlwr... 135
strncat .. 135
strncatpgm2ram ... 135
strncmp .. 136
strncpy.. 137
strncpypgm2ram .. 137
strpbrk .. 138
strrchr ... 138
strspn ... 139
strstr ... 140
strtok .. 140
strupr .. 141
Subnormal Numbers .. 159
Subnormals .. 157, 159
SWAckI2C.. 106, 107
SWGetcI2C .. 106
SWGetsI2C .. 106
SWNotAckI2C .. 106

MPLAB® C18 C Compiler Libraries

DS51297F-page 178 © 2005 Microchip Technology Inc.

SWPutcI2C... 107
SWPutsI2C... 107
SWReadI2C ... 107
SWRestartI2C .. 107
SWStartI2C .. 108
SWStopI2C .. 108
SWWriteI2C.. 108
Synchronous Mode .. 69

T
tan .. 166
Tangent .. 166
tanh .. 166
Timers .. 57

Close... 57
Example of Use... 65
Open ... 58–62
Read ... 63
Write.. 64

tolower.. 125
toupper ... 125

U
UART, Software ... 114

Delays ... 114
Example of Use... 116
Get Character ... 115
Get String.. 115
Macros .. 114
Open ... 115
Put Character .. 115
Put String .. 115
Read ... 116
Write.. 116

ultoa ... 126
Uppercase Characters121, 125, 135
USART, Hardware.. 66

baud .. 73
Busy .. 67
Close... 67
Data Ready ... 68
Example of Use... 74
Get Character ... 68
Get String.. 68
Open ... 69
Put Character .. 70
Put String .. 70
Read ... 71
Write.. 72

V
vfprintf .. 154
vprintf ... 154
vsprintf.. 155

W
Watchdog Timer (WDT) 145, 146
WriteCmdXLCD.. 80
WriteDataXLCD.. 80
WriteI2C ... 28
WriteMwire ... 41

WriteSPI ... 53
WriteSWSPI ... 113
WriteTimer.. 64
WriteUART ... 116
WriteUSART... 72

© 2005 Microchip Technology Inc. DS51297F-page 179

MPLAB® C18 C Compiler Libraries

NOTES:

DS51297F-page 180 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel:011-604-646-8870
Fax:011-604-646-5086

Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

04/20/05

	Preface
	Chapter 1. Overview
	1.1 Introduction
	1.2 MPLAB C18 Libraries Overview
	1.3 Start-up Code
	1.4 Processor-independent Library
	1.5 Processor-specific Libraries

	Chapter 2. Hardware Peripheral Functions
	2.1 Introduction
	2.2 A/D Converter Functions
	2.3 Input Capture Functions
	2.4 I2C™ Functions
	2.5 I/O Port Functions
	2.6 Microwire Functions
	2.7 Pulse-Width Modulation �Functions
	2.8 SPI™ Functions
	2.9 Timer Functions
	2.10 USART Functions

	Chapter 3. Software Peripheral Library
	3.1 Introduction
	3.2 External LCD Functions
	3.3 External CAN2510 Functions
	3.4 Software I2C Functions
	3.5 Software SPI™ Functions
	3.6 Software UART Functions

	Chapter 4. General Software Library
	4.1 Introduction
	4.2 Character Classification Functions
	4.3 Data Conversion Functions
	4.4 Memory and String Manipulation Functions
	4.5 Delay Functions
	4.6 Reset Functions
	4.7 Character Output Functions

	Chapter 5. Math Libraries
	5.1 Introduction
	5.2 32-Bit Floating Point Math Library
	5.3 The C Standard Library Math Functions

	Glossary
	Index
	Worldwide Sales and Service

