Spooky Projects

Introduction to Microcontrollers with Arduino

Class 4

28 Oct 2006 - machineproject - Tod E. Kurt
What’s For Today

• Switches without Resistors
• All about piezos
• Building a melody player
• Using piezos as pressure & knock sensors
• Using Processing with Arduino
• Stand-alone Arduino
Recap: Programming

Like always, just make sure. Make “led_blink” come alive again. Do it. Trust me.
Switches w/o Resistors

AVR chip has internal “pull-up” resistors

Instead of this: You can just do this:

\[+5V \]
\[\text{to input} \]
\[10k \]

But how do you turn on these internal pull-ups?

This is sort of an aside, but it saves a lot of wiring.
Switches w/o Resistors

Answer: use `digitalWrite(pin,HIGH)` on the input

```c
void setup() {
  pinMode(switchAPin, INPUT);
  pinMode(switchBPin, INPUT);
  pinMode(switchCPin, INPUT);
  digitalWrite(switchAPin, HIGH); // turn on internal pullup
  digitalWrite(switchBPin, HIGH); // turn on internal pullup
  digitalWrite(switchCPin, HIGH); // turn on internal pullup
}
```

Seems a little counter-intuitive, think of it as setting the default value of the input

but note, it doesn’t work the other way: you can’t set it to LOW then wire the switch to +5V.
Switches w/o Resistors

Can make a button box easily if no resistors are needed

Plugs right into Arduino board
Piezoelectrics

• Big word – *piezein* is greek for “squeeze”
• Some crystals, when squeezed, make a spark
• Turns out the process goes the other way too
• Spark a quartz crystal, and it flexes
• Piezo buzzers use this to make sound
 (flex something back and forth, it moves air)

Piezo buzzers don’t have quartz crystals, but instead a kind of ceramic that also exhibits piezoelectric properties.
I pronounce it “pie-zoh”. Or sometimes “pee-ay-zoh”.
Piezo Buzzers

- Two wires, red & black. Polarity matters: black=ground
- Apply an oscillating voltage to make a noise
- The buzzer case supports the piezo element and has resonant cavity for sound

Oscillating voltage alternately squeezes and releases the piezo element. Must apply fluctuating voltage, a steady HIGH or LOW won’t work.

diagrams from: http://www.maxim-ic.com/appnotes.cfm/appnote_number/988
What’s in a Piezo Buzzer?

You can get at the piezo element pretty easily.

Be careful not to crack the white disc that is the actual piezo.

Only take it out of its case to use it as a sensor.

Of course, you usually destroy the enclosure to get at the element. And it’s the enclosure that has the proper support and resonant cavity to make a loud sound.
Piezo leads are very thin. The breadboard holes grab them better than the header sockets, which is why the jumper leads are used.
Play a Melody

“sound_serial”

Play the piezo beeper with the Serial Monitor

Type multiple letters from “cdefgabC” to make melodies

This sketch is in the handout, and is based on “Examples/pwm_sound/keyboard_serial”

Notice the problem with this sketch?
Different notes play for different amounts of time.
50 cycles of low C isn’t the same amount of time as 50 cycles of high B
Making it Quieter

Easiest way: add a resistor

Like most things in electronics, if you want less of something, add a resistor. A better value would probably be 1k, but we don’t have that on hand. This may not seem important now, but wait for the next project.
Play a Stored Melody

“play_melody”

Plays a melody stored in the Arduino

This is in the handout, but is also in “Examples/pwm_sound/play_melody” (pin changed)

Melody definition is sort of like the old cell ringtone style
Melody playing logic is hard to follow.
Make a Theremin

“ooo-weee-ooooo”

The original spooky sound machine

Works by measuring your body’s electric field

No touching needed!

We’ll use light in lieu of RF

Leon Theremin

As heard on Star Trek, Beach Boys, horror movies, Mars Attacks!, and bad New Age songs. Works sorta like those touch switches, but no touching here. That is, your body becomes a variable capacitor.
Make a Theremin

Take photocell circuit from before, bolt it on

This is a light-to-sound converter, if you will.
Make a Theremin

“theremin”

Move hand over photocell to change pitch

Play with val processing & cycles count to alter sensitivity, pitch and timbre

This is frequency modulation, since you’re changing the frequency

Okay so maybe it sounds more like a bad video game than a spooky movie
The glitchy sound is cause because of the time it takes to read the sensor
There are ways around such stuff, but requires more complex programming using timers & interrupts
The sound can get annoying quick
Piezo Buzzer as Sensor

• Piezo buzzers exhibit the reverse piezoelectric effect.

• The normal piezoelectric effect is generating electricity from squeezing a crystal.

• Can get several thousand volts, makes a spark

• You probably have seen a big example of this already:

I have a demo piezo igniter from one of these lighters. It’s fun to shock yourself. Puts out several thousand volts. (ionization voltage of air =~ 30kV/cm)
Piezo Read

- To read a piezo you can just hook it into an analog input, but:
 - You need to drain off any voltage with a resistor, or it just builds up
 - You should have a protection diode to limit big voltages, else fry your inputs

Note polarity of piezo still matters.
The protection diode is a special kind of diode called a “zener diode”. It acts invisible until the voltage gets over its designed value (5.1 volts in this case), then it acts like a short circuit.
Create two little busses for GND and A0, and hook components across it.
Black bar on diode indicates “bar” of diode.
Piezo Read

“piezo_read”

Whack the piezo to generate a number based on force of whack

Waits for input to go over threshold, then to drop below threshold

Number is “t”, the number of times it looped waiting for the value to drop below THRESHOLD/2.
How Does that Work?

- When a piezo is struck, it “rings” like a bell
- But instead of sound, it outputs voltage
- The sketch measures time above a certain voltage, hoping to catch largest ring

Depending on how fast you can watch the input, this technique works either really well or not that well. There are much faster ways of watching inputs that loops with analogRead() But for now it works okay
Custom Piezo Sensors

Can mount the element on anything (floor mat, door, your body, etc.)

Here's one glued to a larger brass disc for a drum trigger
Take a Break

(see Craft magazine!)
Processing

• Processing makes Java programming as fun & easy as Arduino makes AVR programming

• Started as a tool to make generative art

• Is also often used to interface to devices like Arduino

And it’s totally open source like Arduino. Processing GUI and Arduino GUI are from the same code, which is why it looks & acts similar.
Using Processing

- First, install Processing
- Load up “Sketchbook » Examples » Motion » Bounce”
- Press “Run” button
- You just made a Java applet

The Processing application folders are in the handout, no installation is needed. Also try Examples » Motion » Collision. It’s a lot of fun. Notice how “Run” launches a new window containing the sketch. The black area at the bottom is a status window, just like in Arduino.
About Processing

- Processing sketches have very similar structure to Arduino sketches
 - `setup()` – set up sketch, like size, framerate
 - `draw()` – like `loop()`, called repeatedly
- Other functions can exist when using libraries
Processing & Arduino

serial communications

• Processing and Arduino both talk to “serial” devices like the Arduino board

• Only one program per serial port
 - So turn off Arduino’s Serial Monitor when connecting via Processing and vice-versa.

• Processing has a “Serial” library to talk to Arduino. E.g.:

 port = new Serial(..,"my_port_name",9600)
 port.read(), port.write(), etc.
 serialEvent() {}
Processing Serial
common Processing serial use

four steps
1. load library
2. set portname
3. open port
4. read/write port

1. import processing.serial.*;

// Change this to the portname your Arduino board
2. String portname = "/dev/tty.usbserial-A3000Xv0"; // or "COM5"

void setup() {
 port = new Serial(this, portname, 9600);
}

void draw() {
 // draw something
}

// called whenever serial data arrives
4. void serialEvent(Serial p) {
 char c = port.readChar();
 if(c == '!') {
 // do something
 }
}
Processing & Arduino

"arduino_ball"

Every time a number is received via the serial port, it draws a ball that size.

Use “piezo_read” Arduino sketch from before

This sketch is in the handout. Uses “serialEvent()” and “read()” to build up a string and then parse it into a number with “int()”
Spookier, Please

“arduino_spookysounds”

Every time the piezo is knocked... a scary eye opens and a spooky sound plays

piezo val is printed, but not used: just its existence is

This sketch is in the handout. You can add your own sounds (must be 16-bit WAV or AIFF). Hook a piezo up to your front door, and plug your computer into your stereo. Every time someone knocks on your door, a scary sound is played
Processing to Arduino

"http_rgb_led"

real quick

Fetch a web page, get a color value from it, send the color to Arduino with RGB LED

```java
String portname = "/dev/tty.usbserial-A3000Xv0";
String urlstr = "http://todbot.com/tst/color.txt";

void setup() {
    port = new Serial(this, portname, 9600);
    getWebColor();
}

// get a webpage, parse a color value from it, write it to Arduino
void getWebColor() {
    URL url = new URL(urlstr);
    URLConnection conn = url.openConnection();
    conn.connect();

    BufferedReader in =
        new BufferedReader(new InputStreamReader(conn.getInputStream()));
    String inputLine;
    while ((inputLine = in.readLine()) != null) {
        if (inputLine.startsWith("#")) {
            // look for #RRGGBB color
            port.write(inputLine);
            return;
        }
    }
}
```

This is not to build, just quickly cover. It’s not in the handout, but, full details at: http://todbot.com/blog/2006/10/23/diy-ambient-orb-with-arduino-update/
Fun Uses
External Power

Arduino can run off USB power or external power.

External power connector

USB connector

voltage regulator

jumper switch to choose power source
External Power

You can use an AC adapter

Connector is standard barrel connector

Make sure it’s “center positive”

Voltage can be 9-15 V DC

Amps is > 200mA

Actually input voltage can be from like 7.5V to 35V, but don’t go over 15V so the voltage regulator doesn’t have to work so hard.
External Power

Or you can use a battery

Be careful about polarity! And shorts!

On the prototyping shield you plug in on top, the “9V” socket is called “raw”
External Power

An easier way to connect a battery

also solves polarity concerns

Power connector input has protection diode.
Also it’s easier with the connector
External Power

Battery life

How long does Arduino last on 9V battery?

- Arduino board draws about 40 mA by itself
- Each LED adds about 20mA when on
- Each servo maybe 100 mA when running
- Switches, pots, etc. are effectively zero

- Battery capacity rated in milliamp-hours (mAh)
- 9V batteries have about 400 mAh capacity

Thus, Arduino by itself lasts $\frac{400}{40} = 10$ hours

Take all your power, add it up, divide it into your battery capacity to get time in hours. There are techniques to make an AVR chip go into sleep mode, and draw microamps (1/1000 mA), but those techniques don’t have nice Arduino-style wrappers yet. For more on batteries and their capacities: http://en.wikipedia.org/wiki/List_of_battery_sizes
Summary

You’ve learned many different physical building blocks:

- **LEDs**
- **switches/buttons**
- **resistive sensors**
- **fast prototyping**
- **piezos**
- **servos**
Summary
And you’ve learned many software building blocks

- pulse width modulation
- serial communication
- digital I/O
- analog I/O
- data driven code
- frequency modulation
- multiple tasks
Summary

Some things we didn’t cover, like:

Motors

Arduino board
pin 7
DC motor
TIP120
1k
1N4004
+5V
DC motor

But they use concepts you know

Relays

Arduino board
pin 7
TIP120
1k
1N4004
+5V
5V relay
to load
Summary

Hope you had fun and learned something

Feel free to contact me to chat about this stuff
END Class 4

http://todbot.com/blog/spookyarduino

Tod E. Kurt

tod@todbot.com
A little extra: MIDI

Combine everything, add a MIDI jack
A little extra: MIDI
A little extra: MIDI

```cpp
void setup() {
  pinMode(switchAPin, INPUT);
  pinMode(switchBPin, INPUT);
  pinMode(switchCPin, INPUT);
  digitalWrite(switchAPin, HIGH); // turn on internal pullup
  digitalWrite(switchBPin, HIGH); // turn on internal pullup
  digitalWrite(switchCPin, HIGH); // turn on internal pullup

  Serial.begin(31250); // set MIDI baud rate
}

void loop() {
  // deal with switchA
  currentSwitchState = digitalRead(switchAPin);
  if( currentSwitchState == LOW && switchAState == HIGH ) // push
    noteOn(1,note_bassdrum,100);
  if( currentSwitchState == HIGH && switchAState == LOW ) // release
    noteOff(1,note_bassdrum,0);
  switchAState = currentSwitchState;

  // no checking of valid range of cmd
  void midiMsg(byte cmd, byte data1, byte data2) {
    Serial.print(cmd, BYTE);
    Serial.print(data1, BYTE);
    Serial.print(data2, BYTE);
  }
}
```

MIDI is just serial at 31250 baud
buttons are drum triggers

void noteOn(byte channel, byte note, byte velocity) {
 midiMsg((0x80 | (channel<<4)), note, velocity);
}

void noteOff(byte channel, byte note, byte velocity) {
 midiMsg((0x80 | (channel<<4)), note, velocity);
}

sends MIDI note-on & note-off messages
end